Расчет верхнего пояса

Проектирование железобетонного промышленного здания
Выбор типа колонн, размеры цеха по вертикали, проверка приближения габаритов мостового крана Назначение длины температурного блока, привязка колонн торцевых рам блока в продольном направлении Постоянная нагрузка от собственного веса стены Определение коэффициента продольного изгиба и подбор сечения арматуры надкрановой части колонны Проверка надкрановой части колонны на устойчивость из плоскости поперечной рамы Определение коэффициента продольного изгиба и подбор сечения арматуры подкрановой части колонны Проверка подкрановой части колонны на устойчивость из плоскости поперечной рамы РАСЧЕТ БЕЗРАСКОСНОЙ ФЕРМЫ Расчет верхнего пояса Определение сечения арматуры Расчет по образованию трещин Расчет стоек Расчет опорного узла Назначение размеров подошвы фундамента Определение максимальных краевых напряжений на грунт от расчетных нагрузок Расчет подколонника
58659
знаков
11
таблиц
31
изображение

5.3 Расчет верхнего пояса

Исходные данные:

Класс бетона: В25, Rb =14,5 МПа; γb2=0.9, EB = 27000 МПа.

Класс арматуры: A-III; Rs = 365 МПа; Rsc = 365 МПа ES = 20000МПа

Сечение 24´20 см.

Расчетные усилия: М =-25.27 кНм, N = -817.695 КН.

Нагрузка на узел фермы: полная Р = 95.76 кН;

 длительная Pl=(g+αS)Aгр = (3,32+0,5·2)18 = 77,76кН

где =0,5 по [2, п.1.7 к)] для III снегового района.

Усилия от длительной нагрузки

-20,52кН;

кН.

Эксцентриситет  м.

5.3.1. Определение коэффициента продольного изгиба

Свободная длина элемента верхнего пояса фермы при расчете в плоскости фермы при е0 = 0,031 < h / 8 = 0,025 равна l0 = 0.9l = 0.9·3=2,7 м [2, табл.33].

Вычисляем случайные эксцентриситеты:

м , м.

Принимаем наибольшее значение: eo = 0.031 м.

кНм.

= 664··(0.031 + 0.01 – 0.04) = 60,42 кНм

= 817.695·(0.031 + 0.1 – 0.04) = 74.4 кНм

==1.812;

, но не менее:

,

принимаем δe = 0,2345;

м-4;

, откуда 0,2% [3, табл. 38];

= 0.023·10-4 м-4;

Критическая сила при потере устойчивости:

1413 кН

Коэффициент продольного изгиба:

5.3.2. Определение сечения арматуры при симметричном армировании

Эксцентриситет с учетом продольного изгиба:

е0·η = 0,031·2,374 = 0,0725м, что больше 0,3h = 0.3·0.2 = 0.06м

Предварительно принимаем случай “больших” эксцентриситетов.

1. Задаем сечение арматуры (4 Æ20 с AS = A’S=12.56см2) [1, прил.3].

2. Определяем  (граничную высоту сечения).

0,605 [3, (25)],

где ω =0,85 – 0,08·RB = 0.85 – 0.08·17·0.9 = 0.7456 [3, (26)]

 для арматуры A-IV: σSR = RSC + 400 - σSP - ΔσSP = 510 + 400 = 910МПа,

σSP = 0, ΔσSP =0, тк. отсутствует предварительное напряжение.

3. Определим требуемую относительную высоту сжатой зоны сечения:

1,47 > 0.605

 - случай “малых” эксцентриситетов.

Определим требуемую относительную высоту сжатой зоны сечения для случая “малых” эксцентриситетов:

0,651

4. Определяем

0,439

5. Проверяем несущую способность по формуле:

[3, (36)],

где:

Ne =N817.695·(0,031·2,374 + 0.2/2 – 0.03)=117.42 кНм

=

=0,439·0,24·0,172·14,5·103·0,9 + 365·103· 12.56·10-4·(0,17-0,03) =104Нм

Условие не выполняется 117,42кНм>104кНм.

Увеличим сечение арматуры, принимаем (4 Æ20 с AS = A’S=15,2см2)

0,754

Ne =N817.695·(0,031·2,374 + 0.2/2 – 0.031)=116,6 кНм

=

=0,47·0,24·0,1692·14,5·103·0,9 + 365·103· 12.56·10-4·(0,169-0,031) =118,6Нм

116,6 кНм <118,6Нм

Условие [3, (36)] выполняется. Сечение показано на рисунке 5.2.

Рис. 5.2 – Сечение верхнего пояса.

5.3.3. Назначение поперечной арматуры

Согласно [3, п.5.22] принимаем поперечную арматуру с шагом 400, что меньше 20d = 2022 = 440 и 500 мм. Диаметр арматуры назначаем из условия свариваемости [4, прил.9] и наличия в сортаменте. Принимаем ø6AIII.

5.4. Расчет нижнего пояса

 

Исходные данные:

Класс бетона: В25, Rb =14,5 МПа; γb2=0.9, EB = 27000 МПа.,

Rb,ser = 18,5 МПа, Rbt,ser 1,6 МПа;

Класс арматуры A-IV; Rs = 510 МПа; Rsc = 450 МПа; Rs,ser =590МПа;

ES = 19000МПа

Сечение 24´22см.

Расчетные усилия: М = - 32,63 кНм, N = 776,7 кН.

a=a’=0,05 м.


Информация о работе «Проектирование железобетонного промышленного здания»
Раздел: Строительство
Количество знаков с пробелами: 58659
Количество таблиц: 11
Количество изображений: 31

Похожие работы

Скачать
25613
3
6

... свариваемости назначается диаметр поперечной арматуры dsw. 2. По диаметру и количеству поперечных стержней в сечении определяется площадь поперечной арматуры.  мм, Asw = n∙fsw, где n – количество каркасов в плите; fsw – площадь одного поперечного стержня. Asw = 1,01 см2, 3. По конструктивным условиям назначается шаг поперечных стержней S: - если высота плиты h ≤ 450 мм., ...

Скачать
28097
5
0

... парусности и относительно небольшому весу легко устанавливается на железобетонной кровле и крепится двумя комплектами растяжек. Применение факельного выброса возможно не только в промышленной вентиляции, но и при вентиляции непромышленных зданий. Иначе говоря, рекомендуется вовсе отказаться от зонтов над выхлопными шахтами. В вентиляционной технике всегда оперируют со среднечасовыми величинами. ...

Скачать
103427
25
24

... 1991. - 767 с. 7.  Бондаренко В.М., Римшин В.И. Примеры расчёта железобетонных и каменных конструкций: Учеб. пособие. - М.: Высш. шк., 2006. - 504 с. 8.  Тимофеев Н.А. Проектирование несущих железобетонных конструкций многоэтажного промышленного здания: Метод. указания к курсовой работе и практическим занятиям для студентов спец. "Строительство ж. д., путь и путевое хозяйство". - М.: МИИТ, 2004. ...

Скачать
70933
10
0

... внутренние самонесущие стены, опирающиеся на перекры­тия и разделяющие пространство этажа здания на отдельные помещения. Полы. Основанием под полы в одноэтажных промышленных зданиях служит грунт, исключающий неравномерную осадку пола и обладающий достаточной прочностью. С грунта снимается растительный слой. Конструкция химически стойкого пола включает следующие элементы: бетонное основание (по ...

0 комментариев


Наверх