4.2             Компоновка сечения колонны

 

Стержень колонны конструируем в виде прокатного швеллера.

Требуемую площадь сечения колонны, определяем по формуле:

 

Aтр = N·γn /2 ·φ·Ry·γc, (4.2.1)

где φ – коэффициент, на этапе компоновки определяем по предварительно заданной гибкости λз, значение которой принимаем по графику [1], рис.7. При N = 1309 кН, λз = 80, тогда φ = 0.686.

 

Атр = 1309·103·0.95/2·0.686·240·106·1 = 37.77 см².

Используя сравнительно постоянную зависимость между радиусом инерции и габаритами сечения, оцениваем ориентировочные размеры швеллера.

 

ix,тр = Lef,x/ λз, (4.2.2)

где Lef,x = Lef,y = lг

 


 

 

lг = H к + 0.5м = 7.8 + 0.5 = 8.3 м,

ix,тр = 830/80 = 10.375 см;

По сортаменту ГОСТ 8240-89 принимаем два швеллера № 30

 

А0 = 40.5 см2 ; Ix0 = 5810 см4;

Iy0= 327 см4; b = 100 мм;

t = 11 мм; ix0 = 12 см;

h = 300 мм; iy0 = 2.84 см;

z0 = 2.52 см; s = 6.5 мм;

Задаваясь гибкостью отдельной ветви относительно собственной оси λз = 35 и шириной планки ds = 250 мм, находим количество планок на колонне:

 

m ³ lг /(λ1·i1 + ds) – 1, (4.2.3)

где i1= iy0,

 

λ1= λз,

m ³ 830 /(35·2,84 + 25) – 1 = 5,672

m =6,

lв= lг/(m+1) – ds, (4.2.4)

lв= 830/(6+1) – 25 = 96.571 см ≈ 94 см,

λ1 = lв/ i1, (4.2.5)

λ1 = 94/ 2.84 = 33.099,

λx= Lef,x /ix0, (4.2.6)

λx= 830/12 = 69.167.

Для нахождения ширины сечения используют условие равноустойчивости:

 

λx = Lef,x =Ö λy2 + λ12

λy =Ö λx2 – λ12, (4.2.7)

λy =Ö 69.1672 – 33.0992 = 60.733,

iy,тр = Lef,y/ λy, (4.2.8)

iy,тр = 830/ 60.733 = 13.66,

Используя известную зависимость между радиусом инерции и габаритом сечений, находят значение:

 

bтр = iy,тр / 0.44, (4.2.9)

bтр = 13.66 / 0.44 = 31.059 см,

b = 31 см.

Принятый размер b должен обеспечивать необходимый зазор между кромками полок ветвей:

 

b ³ 2·bf + 100 мм,

b ³ 2·100 + 100 = 300 мм,

Конструирование планок:

Для обеспечения работы колоны, как безраскосной фермы планки должны обладать достаточной изгибной жесткостью относительно свободной оси х-х. Высота планки:

 

ds = (0.5÷0.8)·b (4.2.10)

ds = (0.5÷0.8)·310 = 190 мм.

Длина планки ls назначается такой, чтобы нахлест на каждую ветвь был не менее 5t, где t - наименьшая толщина соединяемых элементов. Толщину планок назначают в пределах 6…12 мм. таким образом, чтобы обеспечить ее местную устойчивость:

 

ts = (1/10…1/25)·ds (4.2.11)

Принимаем: ts= 8 мм; ds = 180 мм; ls = 250 мм.

4.3             Проверка сечения сквозной колонны

 

Для принятого сечения определяем фактические геометрические характеристики А, Ix, Iy, ix, iy и проводим проверки.

 

А =2·А0 =2·40.5 = 81 см²; (4.3.1)

Ix = 2·Ix0 =2·5810 = 11620 см4; (4.3.2)

Iy = 2• [Iy0 + A0 ·(b1/2)2] = 2· [327+40.5· (25.96/2)2] = 14300 см4; (4.3.1)

ix = iх0 = 12 см; (4.3.3)

iy = ÖIy/A = Ö 14300/81 = 13.287 см. (4.3.1)


λy= Lef,у/ iу(4.3.4)

λy = 830/13.287 = 62.467

λх= Lef,х/ ix (4.3.5)

λх = 830/12 = 69.167;

Проводим проверки прочности гибкости и общей устойчивости стержня колоны.

Проверка общей устойчивости выполняется по формуле:

N·γnmin·A £ Ry·γс, (4.3.6)

где φmin – определяется по максимальной величине λx, λy;

принимаем φmin = 0.758, тогда:

1309·103·0.95/0.758·81 = 202.5 МПа < 240 МПа.

Проверка выполняется, тогда автоматически выполняется проверка прочности.

Проверку гибкости колонн, производим по формулам:

 

λx = Lef,x/ix £ |λ|, λy = Lef,y/iy £ |λ|, (4.3.7)


где |λ| - предельная гибкость колонн, определяем по СНиПу II-23-81*:

 

|λ| = 180 – 60·α, (4.3.8)

α = N·γn /Ry·γc·A·φmin = 1309·103·0.95/240·106·1·81·10-4·0.758 = 0.844; (4.3.9)

|λ| = 180 – 60·0,893 = 129.36

тогда:

 

λ = 830/12 = 69.17 < 129.36; λ = 830/13.287 = 62.47 < 129.36,

гибкость колонн обеспечена.

Расчет планок центрально-жатых колон и их соединений ведут на усилия, возникающие от условной поперечной силы, которую принимают постоянной по всей длине колонны:

 

Qfic = 7.15∙10-6·(2330 – E/Ry)·N·γn /φ ; (4.3.10)

Qfic = 7.15·10-6· (2330-2.06∙105/240)·1309·103·0.95/0.758=17.26 кН,

где φ – коэффициент продольного изгиба, принимается в плоскости соединительных элементов по λef. Условная поперечная сила распределяется поровну между планками двух граней:

 

Qs = Qfic/2 (4.3.11)

Qs = 17.26/2 = 8.63 кН,

В каждой планке, как в стойке безраскосной фермы возникает поперечная сила:

 

Fs=Qs·l/b (4.3.12)

Fs= 8.63·103·0.25/0.31 =6.96 кН,

и изгибающий момент в месте прикрепления к ветвям:

 

Ms=Qs·l/2 (4.3.13)

Ms=8.63·103·0.25/2 = 1.09 кНм,

Проверка прочности планок:

 

σ =Ms·γn /Ws≤ Ry·γc(4.3.14)

Ws=ts·ds2/6 (4.3.15)

Ws= 0.8·192/6 =48.133 см3

σ = 1.09·103·0.95/48.133·10-6 = 39.18 МПа < 240 МПа.

Сварные угловые швы, прикрепляющие планки к ветвям колоны, рассчитываются на совместное действие усилий в планке Ms и Fs по формулам (проверка прочности по металлу):

 

Öσω2 + τω2 ≤ Rωf·γωf·γc(4.3.16)

σω= Ms·γn /Wω(4.3.17)

σω=1.09·103·0.95/30.24·10-6 = 34.24 МПа

τω=Fs·γn /Aω(4.3.18)

τω=6.96·103·0.95/10.08·10-4 = 6.56 МПа

Wωf · kf · lω2/6 (4.3.19)

Wω=0.7∙0.8·182/6 = 30.24 см3

Aω= βf · kf ·lω(4.3.20)

Aω= 0.7·0.8·18 = 10.08 см2

Ö34.242 + 6.562 = 34.863 ≤ 180 МПа

где βf - коэффициент проплавления углового шва βf =0,7мм.

lω - расчетная длина сварного шва:

 

lω=ds– 10мм (4.3.21)

lω= 190 - 10 = 180 мм.

катет шва принимается в пределах 6мм≤ Kf ≤1.2·tsПринимаем: Kf = 8 мм. Стержень колоны должен укрепляться сплошными диафрагмами, располагаемые у концов отправочного элемента и по длине колоны не реже чем через 4м. Диафрагмами служат опорные плиты базы и оголовка колоны.


Информация о работе «Проектирование металлической балочной конструкции»
Раздел: Строительство
Количество знаков с пробелами: 33967
Количество таблиц: 3
Количество изображений: 15

Похожие работы

Скачать
13506
0
0

... и надежно с ним связанный, что имеет место в рассматриваемом случае. Местная устойчивость элементов прокатных профилей не проверяется, так как она обеспечена при проектировании их сортамента. 3. Расчет и конструирование главных балок.   3.1 Подбор сечения балки.   Определение величины сил, которыми загружается главная балка:  кН Определение величины опорных реакций и внутренних ...

Скачать
33944
17
84

...   Балка настила Б2 выполняется из прокатного двутавра. Подберем 3 типа двутавров и выберем из них наиболее экономичный. 1) Двутавр с не параллельными гранями полок по ГОСТ 8239-89. 2) Двутавр балочный с параллельными гранями полок по ГОСТ 26020-83. 3) Двутавр широкополочный с параллельными гранями полок по ГОСТ 26020-83. Статический расчет Определяем расчетную схему балки. Примем разрезную ...

Скачать
25640
2
6

... монтажа. Сопряжение колонны с фундаментом принимаем также шарнирным. Рис. Расчётная схема колонны расчётные длины колонны: . Расчетная длина колонны в продольном и поперечном направлении площадки: . Расчетное значение продольной силы в колонне:  Сбор нагрузок на колонну Колонна работает на сжатие под действием давления балок, опирающихся на оголовок. Выбор типа ...

Скачать
22205
1
19

... сопротивление стали Ry=240 Мпа = 24,5 кН/см2 -предел текучести стали Ru=360 Мпа = 37 кН/см2 Предельный прогиб стального листового настила: Предельный прогиб БН и ВБ: Предельный прогиб ГБ: Рассмотрим два варианта компоновки балочной площадки. 1)  Нормального типа 2)  Усложненного типа 2.1 Балочная клетка нормального типа Проектируем балочную клетку нормального типа. В ...

0 комментариев


Наверх