4.4 Конструирование и расчет оголовка колонны
Следуя рекомендациям, располагаем главные балки на колонне сверху с передачей нагрузки на вертикальные консольные ребра.
Расчетными параметрами оголовка являются:
1. габариты консольных ребер: ширина bs, высота hs и толщина ts;
2. катеты швов крепления ребер к стенке балки kf1 и опорной плиты kf2;
3. толщина стенки стержня колонны в пределах высоты ребер.
Высоту ребер hf назначаем из условия прочности сварных швов, крепящих ребра к стенке колонны, не менее 0.6·h, где h – высота сечения колонны:
hs £ (ålω,тр/4) + 1см, hs ³ 0.6·h, | (4.4.1) |
ålω,тр= N·γn/βf ·kf ·Rωf ·γωf ·γc, |
где N – продольная сила в колонне;
kf – принимаем по наименьшей толщине свариваемых элементов, но не менее 6мм;
ålω,тр= 1309·103·0.95/0.7·0.008·180·106·1·1 = 123.4 см,
hs £ (123.4/4) + 1 = 23.425 см, hs ³ 0.6·30 = 31.85 см,
Принятая высота ребра ограничивается величиной:
85·βf·kf = 85·1.1·0.6 = 56.1 см.
Принимаем hs= 32 см.
Толщину ребра ts назначаем из условия среза:
ts ³ 1.5·Q·γn/hs·Rs·γc, Q = N/2, (4.4.2)
Q = 1309·103/2 = 654.5 кН,
ts ³ 1.5·654.5·103·0.95/0.24·139.2·106·1 = 2.1 см.
Принимаем ts= 2.2 см.
Ширину ребра bs назначаем :
bs = 300 - 2·6.5 = 287 мм = 28.7 см.
Принятая толщина и ширина ребра должны удовлетворять условию сопротивления смятию торца под давлением опорного ребра балки и условию обеспечения местной устойчивости. Из условия смятия:
ts ³ N·γn/Rp·bсм, (4.4.3)
где Rp – определяем по СНиПу II-23-81*;
bсм – расчетная длина площадки смятия: bсм = bs + 2·t,
bs – ширина опорного ребра балки;
t – толщина опорной плиты колонны;
bсм = 22 + 2·2 = 26 см,
ts ³ 1309·103·0.95/368.975·106·0.26 = 1.3 см.
Из условия местной устойчивости:
bs/ts £ 0.5·ÖE/Ry, (4.4.4)
28.7/2.2 = 13.0.5 < 0.5·Ö 2.06·105/240 = 14.65.
Проверяем стенку колонны на прочность по срезу в сечениях, где примыкают консольные ребра:
τ = 1.5·N·γn/2·tw·hs, (4.4.5)
τ = 1.5·1309·103·0.95/4·0.011·0.32 = 132.5 МПа ≤ 139.2 МПа.
Низ опорных ребер обрамляется горизонтальными поперечными ребрами толщиной 6 мм, чтобы придать жесткость ребрам, поддерживающим опорную плиту, и укрепить от потери устойчивости стенку стержня колонны.
4.5 Конструирование и расчет базы колонны
Конструкция базы должна обеспечивать равномерную передачу нагрузки от колонны на фундамент, а также простоту монтажа колонн. Следуя рекомендациям, принимаем базу с траверсами, служащими для передачи усилия с поясов на опорную плиту.
Расчетными параметрами базы являются размеры опорной плиты. Размеры опорной плиты определяем из условия прочности бетона фундамента в предположении равномерного распределения давления под плитой.
Требуемая площадь плиты:
Апл = N·γn/Rф, (4.5.1)
где Rф – расчетное сопротивление бетона фундамента:
Rф = Rпр.б ·³ÖАф/Апл, (4.5.2)
Аф/Апл – отношение площади фундамента к площади плиты, предварительно принимаем равным: 1.1 – 1.2;
Rпр. б– призменная прочность бетона, принимаем в зависимости от класса бетона, для бетона В12.5: Rпр.б = 7.5 МПа;
Rф = 7.5·³Ö1.1 = 7.742 МПа,
Апл = 1309·103·0.95/7.742·106 = 1610 см².
Для определения размеров сторон плиты задаемся ее шириной:
Bпл = bf + 2·ts + 2·c, (4.5.3)
ts – толщина траверсы, принимаем 10мм;
c – ширина свеса, принимаемая 60 – 80мм;
Впл = 31 + 2·1 + 2·7 = 47 см.
Требуемая длина плиты:
Lпл = Апл/Впл, (4.5.4)
Lпл = 1610/47 = 34.26 см,
Lпл = 35 см.
Из конструктивных соображений принимаем размеры плиты равными: Впл = 48 см, Lпл = 52 см. Должно выполняться условие:
Lпл/Впл = 1 – 2, (4.5.5)
52/48 = 1.08.
Толщину плиты определяем из условия прочности при работе плиты на изгиб, как пластины, нагруженной равномерно распределенной нагрузкой по площади контакта отпором фундамента.
q = N·γn /Lпл·Впл, (4.5.6)
q = 1309·103·0.95/0.52·0.48 = 4982 кН/м².
Опорную плиту представляем, как систему элементарных пластинок, отличающихся размерами и характером опирания на элементы базы: консольные (тип 1), опертые по двум сторонам (тип 2), опертые по трем сторонам (тип 3), опертые по четырем сторонам (тип 4).
В каждой элементарной пластинке определяем максимальный изгибающий момент, действующий на полоске шириной 1см.
M = q · α · d², (4.5.7)
где d – характерный размер элементарной пластинки;
α – коэффициент, зависящий от условия опирания и определяется по таблицам Б.Г.Галеркина;
Тип 1: Для консольной пластинки по аналогии с балкой:
М = 4982·0.5·0.08² = 15.942 кНм.
Тип 3:
b1/a1 = 10.5/30 = 0.35,
b1 = (Lпл–hк)/2 = (52 – 31)/2 = 10.5 см,
a1 = 30 см,
→ α= 0.5
d = b1,
M = 4982·0.5·0.105² = 27.46 кНм.
Тип 4:
b/a = 29.7/27.8 = 1.07,
b = 31 – 2·0.65 = 29.7,
a = 30 – 2·1.1 = 27.8 см,
→ α= 0.0529
d = a,
M = 4982·0.0529·0.278² =20.368 кНм.
Толщину плиты определяем по большему из моментов на отдельных участках:
tпл ³ Ö6·Mmax/Ry·γc, (4.5.8)
tпл ³ Ö 6·27.46·103/240·106·1 = 2.6 см,
принимаем tпл = 2.6 см = 26 мм.
Высоту траверсы определяем из условия прикрепления ее к стержню колонны сварными угловыми швами, полагая при этом, что действующее в колонне усилие равномерно распределяется между всеми швами. kf = 8 мм.
Требуемая длина швов:
lω,тр = N·γn/βf·kf·Rωf·γωf·γc, (4.5.9)
lω,тр= 1309·103·0.95/0.9·0.008·180·106·1·1 = 96 см,
hm ³ (lω,тр/4) + 10 мм, (4.5.10)
hm ³ (96 /4) + 1 = 25 см.
Принимаем hm=25 см.
Траверсу проверяем на изгиб и на срез, рассматривая ее как однопролетную двух консольную балку с опорами в местах расположения сварных швов и загруженную линейной нагрузкой:
q1 = q·Bm, (4.5.11)
где Вm – ширина грузовой площадки траверсы;
Вm = Впл /2 = 48/2 = 24 см.
q1 = 4982·103·0.24 = 1196 кН/м.
При этом в расчетное сечение включаем только вертикальный лист траверсы толщиной ts и высотой hm.
σ = 6·Mmax·γn /ts·hm² £ Ry·γc, (4.5.12)
τ = 1.5·Qmax·γn /ts·hm £ Rs·γc, (4.5.13)
где Mmax и Qmax – максимальное значение изгибающего момента и поперечной силы в траверсе.
Mmax = 7.24 кНм,
Qmax= 179.4 кН,
σ = 6·7.24·103·0.95/0.01·0.252= 66.03 МПа < 240 МПа,
τ = 1.5·179.4·103·0.95/0.01·0.25 = 102.3 МПа < 139.2 МПа.
База колонны крепится к фундаменту двумя анкерными болтами, диаметром d = 24 мм.
4.6 Подбор сечения связей по колоннам
Связи по колоннам служат для обеспечения геометрической неизменяемости сооружения и для уменьшения расчетной длины колонн. Связи по колоннам включают диагональную связь, образующую совместно с колоннами и распоркой жесткий диск и систему распорок, прикрепляющую соединение колонны к этому жесткому диску. Угол наклона диагоналей к горизонтальной плоскости α = 350.
Подбор сечения связей производим по предельной гибкости. Расчетная длина распорок и диагональных связей в обеих плоскостях принимается равной их геометрической длине.
При этом распорки связи считаются сжатыми, а элементы диагональных связей растянутыми.
Требуемый радиус инерции сечения стержня:
iтр = lef/|λ|, (4.6.1)
где |λ| - предельная гибкость элементов, принимаем по СНиПу II-23-81*,
|λ| = 400 – для растянутых элементов, |λ| = 200 – для сжатых элементов;
lef – расчетная длина.
Подбор сечения диагональных связей.
- геометрическая длина равна:
l = ÖL² + lг² = Ö 6.2² + 8.3²=10.36 м,
- расчетная длина равна:
l = lef = 10.36 м,
- требуемый радиус инерции сечения стержня равен:
iтр = 10.36/400 = 0.0259 м = 2.59 см,
- по сортаменту , ГОСТ 8509-93, принимаем размер уголков, a = 10 мм: 56 ´ 56 ´ 5
Подбор сечения распорок:
- геометрическая длина равна:
l = B = 6.2 м,
- расчетная длина равна:
lef = l = 6.2 м,
- требуемый радиус инерции сечения стержня:
iтр = 6.2/200 = 0.031 м = 3.1 см,
i = 0.21·b,
b = 14.76 см,
- по сортаменту, принимаем размер уголков: 75 ´ 75 ´ 5
Литература
1. Методические указания к РГУ по курсу ‘Металлические конструкции’. Новосибирск: НГАСУ, 1998.
2. СНиП II-23-81*. Стальные конструкции / Госстрой России. – М.: ГУП ЦПП, 2003. – 90 С.
3. СНиП 2.01.07-85*. Нагрузки и воздействия. – М.: ФГУП ЦПП, 2007. – 44 с.
4. Металлические конструкции: Общий курс: Учеб. для вузов / Г.С.Веденников, Е.И.Беленя, В.С. Игнатьева и др.; Под ред. Г.С.Веденникова. – 7-е изд., перераб. и доп. – М.: Стройиздат, 1998. – 760с.: ил.
5. Металические конструкции. В 3 т. Т 1. Элементы конструкций / В.В.Горев, Б.Ю.Уваров, В.В.Филипов и др.; Под ред. В.В.Горева. – 3-е изд., стер. – М.: Высш.шк., 2004. –551 с.: ил.
... и надежно с ним связанный, что имеет место в рассматриваемом случае. Местная устойчивость элементов прокатных профилей не проверяется, так как она обеспечена при проектировании их сортамента. 3. Расчет и конструирование главных балок. 3.1 Подбор сечения балки. Определение величины сил, которыми загружается главная балка: кН Определение величины опорных реакций и внутренних ...
... Балка настила Б2 выполняется из прокатного двутавра. Подберем 3 типа двутавров и выберем из них наиболее экономичный. 1) Двутавр с не параллельными гранями полок по ГОСТ 8239-89. 2) Двутавр балочный с параллельными гранями полок по ГОСТ 26020-83. 3) Двутавр широкополочный с параллельными гранями полок по ГОСТ 26020-83. Статический расчет Определяем расчетную схему балки. Примем разрезную ...
... монтажа. Сопряжение колонны с фундаментом принимаем также шарнирным. Рис. Расчётная схема колонны расчётные длины колонны: . Расчетная длина колонны в продольном и поперечном направлении площадки: . Расчетное значение продольной силы в колонне: Сбор нагрузок на колонну Колонна работает на сжатие под действием давления балок, опирающихся на оголовок. Выбор типа ...
... сопротивление стали Ry=240 Мпа = 24,5 кН/см2 -предел текучести стали Ru=360 Мпа = 37 кН/см2 Предельный прогиб стального листового настила: Предельный прогиб БН и ВБ: Предельный прогиб ГБ: Рассмотрим два варианта компоновки балочной площадки. 1) Нормального типа 2) Усложненного типа 2.1 Балочная клетка нормального типа Проектируем балочную клетку нормального типа. В ...
0 комментариев