2.5.4 Применение
Роданид ртути (II) применяется в аналитической химии для определения кобальта, галогенидов, цианидов, сульфидов,и тиосульфатов, для спектрофотомертических измерений концентрации хлорангидрида изокапроновой кислоты на производстве. Является комплексообразователем. Используется в неорганическом синтезе. Применяется в фотографии для усиления негатива. Интересен для проведения лабораторных работ. [5]
2.6. Токсикологические аспекты
Тиоцианаты оказывают вредное воздействие на все живые организмы. Поэтому в процессе работы с ними следует избегать попадание данных веществ на слизистые оболочки, в глаза и кожу.
При попадании в организм небольших количеств тиоцианатов в течении длительного времени, последние оказывают тиреостатическое действие. Сможет развиться зоб и дистрофические процессы в различных органах.
Симптомы острого отравления – одышка, хрипы, нарушение координации движений, сужение зрачков, судороги, понос, скачки кровяного давления, нарушения сердечной деятельности и психические расстройства.
При остром отравлении необходимо прекратить контакт пострадавшего с веществом. Пострадавшему необходимы тепло, покой и антидотная терапия (нитриты, аминофенолы, тиосульфаты,органические соединения кобальта). [5]
3. Экспериментальная часть
3.1. Методика синтеза тиоцианата ртути (ΙΙ)
3.1.1 Необходимое оборудование
Термостойкий химический стакан, стеклянная палочка, воронка Бюхнера, колба для отсасывания, фильтровальная бумага, фарфоровая чашка, вакуумный насос, сушильный шкаф.
3.1.2 Необходимые реактивы
Ртуть (II), роданида калия, вода, азотная кислота (конц.).
3.1.3 Получение Hg(SCN)2
Роданид ртути получают из нитрата ртути (II) и роданида калия. При отсутствии нитрата ртути (II) его можно получить из ртути и азотной кислоты. Для этого необходимо нагреть 50 мл. концентрированной азотной кислоты (под тягой) до 50 – 60°С и не прекращая нагревания порциями ввести 10 г. металлической ртуть при постоянном помешивании (осторожно, выделяется диоксид азота). В полученном растворе содержится около 15,9 г нитрата ртути (II). Отдельно готовят раствор роданида калия (9,5 г соли на 47,5 мл воды). Раствор нитрата ртути (II) сливают с раствором роданида калия, выпавший осадок роданида ртути отфильтровывают (лучше на воронке Бюхнера под вакуумом) и подсушивают. Высушенный препарат хранят в плотно закрытых баночках.
3.1.4 Количественные ращеты
Расчет количества нитрата ртути:
Hg + 4HNO3 = Hg(NO3)2 + 2NO2 + 2H2O
V(HNO3) = 50 мл.
m(Hg) = 10 г.
ύ(Hg(NO3)2) = 10/200,6=0,049 моль
M(Hg(NO3)2) = 324,52
m(Hg(NO3)2) = 324,52*0,049 = 15,9 г.
Расчет теоретической массы тиоцианата ртути (II):
Hg(NO3)2+2KSCN = Hg(SCN)2↓+2KNO3
ύ(Hg(NO3)2) = 0,049 моль
ύ(Hg(SCN)2) = 0,049 моль
M(Hg(SCN)2) = 316,72
m(Hg(SCN)2) = 0,049*316,72 = 15,5 г.
Расчет выхода полученного продукта:
m(Hg(SCN)2) = 13,1 г. практическая масса
ή = (13,1/15,5)*100% = 84,5%
3.1.5 Идентификация полученного вещества
Тиоцианата ртути (II) известен со времен алхимиков своей термической неустойчивостью, поэтому для идентификации полученного вещества необходимо положить немного порошка на металлическую пластину и поджечь (опыт необходимо проводить под тягой).
2Hg(SCN)2 + 3О2 = 2SO2 + C3N4 + CO2 + 2HgS
Вещество вспучивается и разбухает, напоминая ползущую змею. Опыт называется «фараонова змея».
4. Выводы
1. Сделан литературный обзор по свойствам соединений ртути и тиоцианатов некоторых металлов.
2. Получен тиоцианат ртути (II) по наиболее приемлемой методике и доказана его термическая неустойчивость.
3. Выход полученного продукта составил 84,5% (m(Hg(SCN)2) = 13,1 г.).
4. Полученное вещество можно использовать в синтезе некоторых неорганических веществ, в аналитической химии, а также для демонстрации опыта «фараонова змея».
5. Список используемой литературы
1. Химический энциклопедический словарь. - М.: 1983. Т. 5.
2. Большая Советская энциклопедияю. - М.: Большая Советская энциклопедия, 1975. Т. 22.
3. Глинка Н. Л. Общая химия. - Л.: Химия, 1983.
4. Ахметов Н. С. Общая и неорганическая химия. - М.: Высшая школа, 2006.
5. Трахтенберг Т. М., Коршун М. Н. Ртуть и ее соединения в окружающей среде. - К.: 1990.
6. Реми Г. Курс неорганической химии. - М.: 1963. Т. 2.
7. Смирнов С. К. Химия псевдогалогенидов. - К.: 1981.
8. http://db.alta.ru/poyasnenia/htmltnved/P2838.html
9. Химическая энциклопедия. - М.: Большая Российская энциклопедия. 1995. Т. 4.
10. РЖХ, статья 5В 148, 1989.
11. http://chemistryandchemists.narod.ru/Video/Vigeo_Hg_CNS_2.html
... вплоть до состояния sp3. Однако получить макроскопическое количество кристаллического нитрида углерода до настоящего времени таким способом не удавалось [3]. Сложность термобарического синтеза кристаллического нитрида углерода заключается в том, что неизвестна область его термодинамической стабильности. Иными словами неизвестно, насколько велики должны быть давление и температура синтеза для ...
... , а затем строят калибровочный график, с помощью которого выполняют расчеты. Спектрофотометрия в УФ- и видимой областях — один из наиболее широко используемых физико-химических методов в фармацевтическом анализе. Анализируемые ЛВ должны иметь в структуре молекулы хромофорные группы (сопряженные связи, ароматическое ядро и др.), обусловливающие различные электронные переходы в молекулах и ...
... и, конечно же, за многими другими, которые будут получены, — будущее. В этом направлении и работают многие НИИ и исследователи. Аспекты поиска новых лекарств, изыскание новых лекарственных веществ состоит из трех основных этапов: химический синтез, установление фармакологической активности и безвредности (токсичности). Такая стратегия поиска с большой затратой времени, реактивов, животных, труда ...
... , основанной на поглощении атомами рентгеновского излучения. Ультрафиолетовая спектрофотометрия — наиболее простой и широко применяемый в фармации абсорбционный метод анализа. Его используют на всех этапах фармацевтического анализа лекарственных препаратов (испытания подлинности, чистоты, количественное определение). Разработано большое число способов качественного и количественного анализа ...
0 комментариев