4. О равновесии.

В любом естественно протекающем (самопроизвольном или свободном) процессе свободная энергия системы понижается. При достижении системой состояния термодинамического равновесия её свободная энергия достигает минимума и уже в равновесии далее сохраняет постоянное значение. Из равновесия систему можно вывести за счёт внешних сил, повышая её свободную энергию. Такой процесс уже не может быть свободным - он будет вынужденным.

Микроскопические движения частиц и в равновесии не прекращаются, и в системе, состоящей из огромного числа частиц и подсистем любой природы, возможно множество различных частных вариантов и комбинаций отдельных частей и внутри них, но все они не выводят систему из равновесия.

Термодинамическое равновесие в макросистеме совсем не означает, что и в её микроскопических фрагментах исчезают все виды движения. Напротив, равновесие обеспечивается динамикой именно этих микроскопических движений. Они-то осуществляют непрерывное выравнивание - сглаживание наблюдаемых макроскопических признаков и свойств, не допуская их выбросов и чрезмерных флуктуаций.

5. О статистическом методе.

Основной целью статистического метода является установление количественной связи между характеристиками механических движений отдельных частиц, составляющих равновесный статистический коллектив, и усреднёнными свойствами этого коллектива, которые доступны для термодинамических измерений макроскопическими методами.

Цель состоит в том, чтобы на основании механических характеристик движений отдельных микроэлементов равновесного коллектива вывести количественные законы для термодинамических параметров системы.

6. Равновесия и флуктуации. Микросостояния.

Согласно методу Гиббса термодинамическая система это коллектив - совокупность очень большого числа элементов - однотипных подсистем.

Каждая подсистема в свою очередь может также состоять из очень большого числа иных ещё более мелких подсистем и в свою очередь может играть роль вполне самостоятельной системы.

Все естественные флуктуации внутри равновесной системы равновесия не нарушают, они совместимы с устойчивым макроскопическим состоянием огромного коллектива частиц. Они просто перераспределяют признаки отдельных элементов коллектива. Возникают разные микросостояния, и все они суть версии одного и того же наблюдаемого макросостояния.

Каждая отдельная комбинация состояний элементов коллектива порождает лишь одно из огромного множества возможных микросостояний макросистемы. Все они в физическом смысле равноценны, все приводят к одному и тому же набору измеримых физических параметров системы и отличаются лишь какими-то деталями распределения состояний между элементами …

Все микросостояния совместимы с макроскопическим - термодинамическим равновесием, и числовой разброс отдельных составляющих свободной энергии (её энергии и энтропии) является вполне обычным обстоятельством. Надо понимать, что разброс возникает за счёт непрерывного обмена энергией между частицами – элементами коллектива. У одних элементов она уменьшается, но при этом у других увеличивается.

Если система находится в термостате, то ещё непрерывно осуществляется обмен энергией и с окружающей средой. Происходит естественное энергетическое перемешивание коллектива, за счёт непрерывного обмена между микрочастицами коллектива. Равновесие постоянно поддерживается через тепловой контакт с внешним термостатом. Так в статистике чаще всего именуют окружающую среду.

7. Метод Гиббса. Статистический ансамбль и его элементы.

Создавая универсальную схему статистической механики, Гиббс использовал удивительно простой приём.

Любая реальная макроскопическая система это коллектив из огромного множества элементов – подсистем. Подсистемы могут иметь и макроскопические размеры, и могут быть микроскопическими, вплоть до атомов и молекул. Всё зависит от рассматриваемой задачи и уровня исследования.

В разные моменты времени в разных точках реальной системы, в разных пространственных регионах макроскопического коллектива мгновенные характеристики его малых элементов могут быть различны. "Неоднородности" в коллективе постоянно мигрируют.

Атомы и молекулы могут находиться в разных квантовых состояниях. Коллектив огромный, и в нём представлены различные комбинации состояний физически одинаковых частиц. На атомно-молекулярном уровне всегда происходит обмен состояниями, имеет место их непрерывное перемешивание. Благодаря этому свойства различных фрагментов макроскопической системы выравниваются, и физически наблюдаемое макроскопическое состояние термодинамической системы внешне выглядит неизменным...

Броуновское движение – главный молекулярный механизм, обеспечивающий перемешивание локальных свойств микроскопических подсистем - элементов макроскопического коллектива. Броуновское движение и ряд сопутствующих ему релаксационных процессов выравнивают в пространстве и усредняют во времени суммарные динамические характеристики макроскопического равновесного коллектива, превращая их в измеримые термодинамические параметры с равновесными значениями.

Так возникает огромное множество мгновенных различающихся суммарных состояний всего коллектива, и все они совместимы с одним и тем же внешне неизменным термодинамическим равновесием системы.

Всё множество, сколь необозримым оно бы не казалось, всевозможных комбинаций микромеханических состояний всех однотипных элементов системы, совместимых с её термодинамическими характеристиками в её определённом наблюдаемом термодинамическом (макроскопическом) состоянии, Гиббс определил как АНСАМБЛЬ.

Ансамбль напоминает ленту бесконечного фильма, кадры котрого, время от времени повторяясь, с бесконечными вариациями изображают одну и ту же сцену с некоторыми изменениями. Элементы ансамбля подобны отдельным кадрам этого бесконечного фильма.

Весь ансамбль изображает макросостояние (фильм), а его элементы суть микросостояния (кадры этого фильма).

8. Среднее хронологическое и среднее по ансамблю.

Вместо того, чтобы отыскивать проблему усреднения во времени динамических признаков элементов коллектива, вместо исследования непосильной проблемы перемещения огромного числа частиц во времени и в пространстве, Гиббс ввёл замечательный ПОСТУЛАТ О СРЕДНИХ, а именно: "Среднее во времени значение динамической величины равно её среднему по ансамблю". Можно и чуть иначе: "Среднее хронологическое любой динамической величины равно её среднему по ансамблю".

Грандиозная, никакими методами не решаемая, проблема механического изучения и усреднения ВО ВРЕМЕНИ динамических свойств огромного числа элементов, постоянно перемещающихся, перемешивающихся внутри коллектива, сменяется на изумление доступной модельной задачей построения АНСАМБЛЕЙ.

Элементами, идеально подходящими для конструирования ансамблей оказываются не зависящие от времени стационарные состояния (орбитали и термы) квантовых объектов, точнее – их волновые функции. У отдельных частиц, не взаимодействующих между собою, это орбитали всех их стационарных движений и соответствующие орбитальные уровни.

Метод Гиббса универсален.

9. Ансамбль и статистический вес, микросостояния и вероятности.

Количество микросостояний, совместимых с наблюдаемыми свойствами коллектива, принято называть статистическим весом W, или по Планку термодинамической вероятностью макросостояния W. Эти две величины, W и W, в нашем случае можно считать равноценными (но они всё же не идентичны). В методе Гиббса их вычисления можно избежать. Такая необходимость и возможность возникают лишь при анализе атомно-молекулярных систем в газах и кристаллах, при этом упрощается решение конкретных проблем.

Термодинамическая вероятность не может быть менее единицы W>1, и в большинстве рассматриваемых нами задач она не просто больше единицы, но очень большое целое число.

Математическая вероятность w<1 это всего лишь доля микросостояния в огромном ансамбле, и она отличается тем, что менее единицы.

Реально существуют и в химии играют важную роль такие системы, у которых возможные различные квантовые состояния очень мало различаются энергией, а коллектив это простая смесь из одинаковых частиц, но в разных квантовых состояниях.

В таких случаях математические вероятности микросостояний совпадают с мольными долями частиц, заселяющих эти уровни.

Отметим, что термодинамическая вероятность характеризует ансамбль в целом, тогда как математические вероятности – лишь элементы ансамбля – микросостояния.

Множество микросостояний, каким бы большим он ни казалось, дискретное, и потому счётное, и их можно нумеровать, пересчитывая посредством довольно простых приёмов комбинаторики, в которой основными понятиями являются перестановки, сочетания и размещения:

1) Число PN перестановок из N элементов равно

PN = N! =1´2´3´... ´N

2) Число CNm сочетаний из N элементов по m элементов равно

CNm = N! /(m! N-m!) = [1´2´3´... ´N] / [1´2´3´... ´m] [1´2´3´... ´(N-m)]

3) Число ANm размещений из N элементов по m элементов равно

ANm = N(N-1) (N-2) … [N-(m-1)] =N! /(N-m) !

Это формулы комбинаторики, хорошо известные из школьного курса математики.

ПРИМЕЧАНИЕ

На самом деле термодинамические вероятности имеет смысл непосредственно подсчитывать, и сравнивать в тех ситуациях, когда частицы распределяются между состояниями без изменения полной энергии статистического коллектива. Множество состояний коллектив с одинаковой энергией образует так называемый микроканонический ансамбль Гиббса.


Информация о работе «Статистическая термодинамика»
Раздел: Химия
Количество знаков с пробелами: 14228
Количество таблиц: 0
Количество изображений: 1

Похожие работы

Скачать
20520
4
11

... значения энтропии при различных температурах рассчитаны без учета вклада на смешение конформеров. Для сравнения в табл. 2.11 приведены значения энтропии 2,2,4-триметилпентана, рекомендованные [1]. Ошибка расчета по методу статистической термодинамики возрастает с увеличением температуры от 298 до 600 К с -0,04 до -0,14 % отн. Зависимость  от температуры для состояния идеального газа представлена ...

Скачать
23308
6
3

... 1292/(2.016´256)] 3/2´ [43.12/(4.597´7430)] ´(2´2/12) =0.031´18.136´4=183.1´0.0544´4=39.84. Колебательные статистические суммы [q0(HI)] –2 @ 1. [q0(H2)] @1. [q0(I2)] =2.80. Электронный сомножитель: exp(-DU0o/RT) = exp(1.676) = 5.348 Константа равновесия равна: K=5.348´39.84/2.80=76.1. Резюме: Простота приближений и пренебрежение ...

Скачать
20405
5
13

... большой материал, предусмотренный программой. Преимущество та­кого подхода к рассмотрению отдельных, или группы, вопросов, как показали наши наблюдения, не вызывает сомнений как с точки зрения корректности математических выражений, так и логичности и взаимосвязи явлений термодинамики. СОСТАВЛЕНИЕ ДЕТЕРМИНАНТОВ ЯКОБИ И ТАБЛИЦЫ ТЕРМОДИНАМИЧЕСКИХ КОЭФФИЦИЕНТОВ ДЛЯ СИСТЕМ, ОПИСЫВАЕМЫХ БОЛЬШИМ ...

Скачать
49233
3
14

... впервые получены следующие результаты: ·  Разработана обобщенная координационно-кластерная модель для описания взаимодействий и расчета термодинамических характеристик раствора неметалла в расплаве из трех металлических компонентов. ·  Установлена связь между термодинамическими свойствами (коэффициентами термодинамической активности и параметрами взаимодействия компонентов первого порядка) и ...

0 комментариев


Наверх