Прогнозирование энтропий органических соединений методом статистической термодинамики [1, 13]
Применение квантовой теории к описанию энергетических соотношений молекул газов привело к развитию достаточно надежных методов расчета термодинамических свойств веществ, находящихся в состоянии идеального газа. Для энтропии это методы статистической термодинамики [13], где свойство представляется в виде суммы вкладов для различных видов движения молекул.
. (2.12)
Здесь необходимо остановиться более подробно на методике расчета отдельных вкладов.
- здесь это вклад в энтропию, обусловленный симметрией наружного вращения молекулы как целого и симметрией внутреннего вращения только тех групп, для которых она не может быть учтена при анализе энтропийного вклада, обусловленного внутренним вращением. Детали расчета симметрии наружного вращения молекул рассмотрены выше. Второй вклад, о котором идет здесь речь, касается внутреннего вращения в молекуле, которое обеспечивается не одной, а одновременно двумя связями. Например, для ароматических систем такими группами являются п-фениленовые фрагменты (–С6Н4–), внутреннее вращение которых происходит одновременно по двум связям.
Учет вклада на смешение вращательных изомеров (), обусловленное наличием в молекуле хиральных центров, производится в соответствии с подходом, изложенным в п. 2.1.
Вклад поступательного движения молекул в энтропию рассчитывается по уравнению
, (2.13)
где М – молекулярная масса; - мольный объем газа; - число Авогадро; h – постоянная Планка. Подставив в это уравнение значения констант k, h, NA, при стандартном состоянии P = 1 атм = 101325 Па, получим формулу, удобную для практических расчетов энтропии поступательного движения:
Дж/(моль·К), (2.14)
где Р должно выражаться в физических атмосферах, а остальные величины – в соответствии с системой СИ.
Таким образом, для вычисления вкладов поступательного движения молекул в энтропию газа нужно знать только его молекулярную массу, и для изомеров эти вклады равны по определению.
Остальные вклады требуют привлечения информации о геометрии, энергетических характеристиках молекул и частотах колебательного спектра. Для получения подобной информации используются различные расчетные методы. Окончательная обработка информации и вычисление энтропийных вкладов выполняются с помощью разработанной на кафедре ТО и НХС СамГТУ программы Entropy, описание которой приведено далее.
В рамках программы Entropy геометрия молекулы оптимизируется методом молекулярной механики (силовое поле MMX на базе силового поля Эллинджера MM2) программой PCModel 3.2. Для оптимизации молекул бифенилов желательно использовать PCModel 4.0, обладающую большими возможностями при расчетах в p-электронных системах. Выходной информацией являются оптимизированная геометрия молекулы для наиболее устойчивого конформера и информация об изменении энергии молекулы при вращении каждого из волчков, сохраняемые в отдельных файлах. Для формирования потенциальной кривой барьера вращения каждого из волчков используются значения потенциальной энергии молекулы при изменении двугранного угла между избранными связями волчка и остова от 0о до 360о с шагом 10о. При этом на каждом фиксированном значении угла проводится оптимизация геометрии молекулы.
На основании сведений о геометрии молекулы рассчитывается произведение главных центральных моментов инерции IAIBIC , являющееся свободным членом кубического уравнения
,
где ; ; ; ; ; - моменты инерции молекулы (здесь n – число атомов в молекуле; mi – масса i-того атома; xi, yi, zi – координаты i-того атома в системе координат с центром, находящемся в центре инерции молекулы). Отсюда
. (2.15)
В дальнейшем рассчитывается сумма состояний жесткого ротатора
(2.16)
и вклад в энтропию, обусловленный вращением молекулы как целого
, (2.17)
где h – постоянная Планка, k – постоянная Больцмана.
В тех случаях, когда это предусмотрено решаемой задачей, рассчитывается вклад в энтропию, обусловленный смешением конформеров. Программой Entropy наряду с классическим подходом предусмотрен следующий вариант расчета энтропии смешения конформеров. На основании полученных ранее сведений об изменении энергии молекулы при вращении каждой из ее групп вычисляется
, (2.18)
где m – общее количество рассматриваемых конформаций (в нашем случае учитывались все состояния, полученные при повороте волчка от 0о до 350о с шагом 10о, то есть m=36∙n, где n – число вращающихся групп в молекуле), xi – мольная доля каждой конформации
, (2.19)
где n – число вращающихся групп в молекуле, m – количество рассматриваемых конформаций, Ei – энергия молекулы, в данном состоянии равная , где - исходное значение энергии, - наименьшая энергия молекулы, полученная при вращении всех возможных волчков.
Для нахождения вклада в энтропию, обусловленного колебательным движением, используются расчетные значения частот колебательного спектра, рассчитанные любым из квантово-химических методов, реализованных в программах Gaussian или Hyperchem, для оптимизированной тем же методом геометрии молекулы. Критерием качества оптимизации служит отсутствие в спектре отрицательных значений частот.
Расчет вклада в энтропию, обусловленного колебательным движением, производится следующим образом.
, (2.20)
где νi – частота из принятого к расчету набора, m – количество частот в наборе. Из полного набора частот колебательного спектра исключаются крутильные колебания, соответствующие вращению групп, участвующих в расчете вклада в энтропию от заторможенного вращения; таким образом, , где n – число атомов в молекуле, ntop – число волчков. При отсутствии надежных методик определения крутильных колебаний в спектре применяется приближенная оценка типов колебаний с использованием режима Animate программы HyperChem 5.0.
Информация о геометрии молекулы и потенциальных кривых барьеров вращения волчков используется для расчета вклада в энтропию, обусловленного внутренним вращением групп в молекуле. Энтропийный вклад определялся как
, (2.21)
здесь n – число максимумов потенциальной кривой барьера вращения группы, s– число симметрии группы (подходы к определению чисел симметрии вращающихся групп рассмотрены выше), Sfr – энтропия свободного вращения волчка, - разность между энтропиями свободного и заторможенного вращения, определяемая по таблицам Питцера и Гуинна [1] как функция и , где Vo – эффективный барьер вращения волчка, Qfr – статистическая сумма по состояниям свободного внутреннего вращения.
Величина эффективного барьера вращения принимается равной , где - зависимость изменения потенциальной энергии молекулы от угла поворота волчка φ. Для расчета Vo полученные методом молекулярной механики значения потенциальной энергии молекулы при заданных значениях угла поворота волчка описываются с помощью кубического сплайна, затем полученный сплайн интегрируется по методу Симпсона.
Статистическая сумма по состояниям свободного внутреннего вращения рассчитывалась как
, (2.22)
где Iпр – приведенный момент инерции волчка, который рассчитывался в соответствии со следующей процедурой.
Для вращающейся группы вводится координатная система с осями x, y, z, расположенными следующим образом: ось z совпадает с осью вращения волчка, ось x проходит через центр масс волчка и перпендикулярна оси z, ось y проходит через точку пересечения осей x, z и перпендикулярна к ним. Атомы волчка, лежащие на оси z, из дальнейшего рассмотрения исключаются. Далее производится расчет следующих величин: - момент инерции волчка относительно оси z, и - произведения моментов инерции, - фактор несбалансированности волчка.
Затем находятся направляющие косинусы осей x, y, z относительно главных центральных осей 1, 2, 3 инерции молекулы. Направление осей выбирается таким образом, чтобы обе системы координат были или правыми, или левыми. При этом должно соблюдаться условие равенства единице определителя матрицы направляющих косинусов, т.е.
,
что может использоваться для проверки правильности определения направляющих косинусов.
Приведенный момент инерции рассчитывается следующим образом:
, (2.23)
где . Здесь r(i) – проекции на главные оси инерции молекулы вектора, направленного из центра тяжести молекулы в центр координат волчка, индекс i принимает значения 1, 2, 3 в циклическом порядке, т.е. при i=1 индекс i-1 равен 3, а индекс i+1 при i=3 равен 1.
Достоверность полученных значений энтропии определяется надежностью расчетных процедур. Значения энтропийных вкладов зависят от набора методов, с помощью которых они вычисляются. Для простых органических молекул с достаточной долей вероятности можно признать достоверными все описанные выше процедуры расчета вкладов. Для более сложных соединений могут возникать неоднозначные ситуации при определении большинства вкладов в энтропию, особенно энтропии смешения конформеров, и вопросы, связанные с принципиальной возможностью заторможенного вращения объемных волчков. В этом случае принятию решений должен предшествовать обстоятельный анализ экспериментальных сведений по энтропиям родственных соединений.
При наличии в молекуле соединения объемных волчков, вращение которых практически невозможно, вклад на внутреннее вращение таких волчков исключается из расчета. В этом случае при расчете вклада (уравн. 2.20) из полного набора частот колебательного спектра не исключаются крутильные колебания, соответствующие вращению рассматриваемых групп. Очевидно, что для принятия подобных решений необходим достаточный опыт.
... статистической термодинамики до сих пор во многих случаях отдается предпочтение [1, 29] геометрическим параметрам молекул, вычисленным аддитивно. Привлекательность же аддитивных методов прогнозирования энтропии органических веществ, обусловленная несравнимо большей легкостью и доступностью их применения по сравнению с другими методами, является стимулом к их совершенствованию. Поэтому нами ...
... снятия вклада на межмолекулярные взаимодействия рассчитывалась бессимметрийная газофазная константа равновесия реакции . Давления насыщенного пара рассчитывались методом Ли-Кеслера [50] или по экспериментальным данным. Применение к расчету давлений насыщенного пара методики, описанной в главе 2.1, позволяет обеспечить погрешность расчета не более 10% отн. для всех давлений, приведенных в данной ...
... мере, синергетическим стилем мышления может быть некой платформой для открытого творческого диалога между учеными, мыслителями, деятелями искусства, имеющими различные творческие установки и взгляды на мир. 2. Некоторые парадоксальные следствия синергетики Множество новых парадоксальных идей, образов и представлений возникает в синергетике. Кроме того, с точки зрения синергетики может быть ...
... с кислородом, восстановлением - отнятие кислорода. С введением в химию электронных представлений понятие окислительно-восстановительных реакций было распространено на реакции, в которых кислород не участвует. В неорганической химии окислительно-восстановительные реакции (ОВР) формально могут рассматриваться как перемещение электронов от атома одного реагента (восстановителя) к атому другого ( ...
0 комментариев