2.1 Ионная проводимость электролитов

Факт разложения электролитов при прохождении через них тока показывает, что в них движение зарядов сопровождается движением атомов или групп атомов, связанных друг с другом (например, SO4, NO3 и т. п.); эти атомы или атомные группы представляют собой части молекулы растворенного вещества.

Естественно предположить, что заряжены именно эти части молекулы в растворе и что они являются носителями электрического заряда. Их перемещение под действием сил электрического поля и представляет собой электрический ток, идущий через электролит.

Было обнаружено, что при прохождении тока через электролит выделение вещества происходит на обоих электродах. По химическому составу это разные части молекулы растворенного вещества. По количеству, если измерять его в химических эквивалентах, они равны. Знаки зарядов у них, очевидно, противоположны.

Мы знаем, что заряженные атомы называются ионами. То же название носят заряженные молекулы или их части. Мы можем, следовательно, сказать, что проводимость электролитов является ионной, т. е. обусловлена движением в них положительных и отрицательных ионов, которые образуются из нейтральной молекулы путем распада ее на две части, заряженные равными и противоположными зарядами.

Молекулы растворенного вещества, которые до растворения были электрически нейтральны, при растворении распадаются на положительные и отрицательные ионы, способные перемещаться независимо друг от друга.


а) б)

Рис. 1

Проводимость электролита зависит от наличия положительных и отрицательных ионов (кружки со знаками «+» или «-»): а) цепь разомкнута, тока нет; б) цепь замкнута, через электролит идет ионный ток.

Эти представления иллюстрируются рис. 1. Кружками между электродами со значками «+» и «-» схематически изображены положительные и отрицательные ионы растворенного вещества. Пока между электродами А и К не создано поле, ионы эти совершают только беспорядочное тепловое движение, как и все остальные молекулы раствора (рис.1, а). В каждом направлении за единицу времени протекает одинаковый положительный и отрицательный заряд, т. е. нет электрического тока — преимущественного переноса заряда в определенном направлении. При наложении разности потенциалов на электроды А и К, когда внутри электролита возникает электрическое поле, на это беспорядочное движение накладывается упорядоченное движение в противоположные стороны ионов различных знаков: отрицательных — к аноду А, положительных — к катоду К (рис. 1, б).

При соприкосновении с катодом положительные ионы получают недостающие им электроны и выделяются в виде нейтральных атомов, а взамен электронов, нейтрализовавших ионы, новые электроны переходят от батареи к катоду. Точно так же отрицательные ионы при соприкосновении с анодом отдают ему свои избыточные электроны, превращаясь в нейтральные атомы; электроны же уходят по металлическим проводам в батарею. Таким образом, ток в электролите обусловлен движущимися ионами; на электродах же происходит нейтрализация ионов и выделение их в виде нейтральных атомов (или молекул). Итак, электрический ток в электролитах представляет собой движение положительных и отрицательных ионов.

Такое представление об электролизе подкрепляется многочисленными фактами. С этой точки зрения первый закон Фарадея получает простое объяснение. Каждый осаждающийся на электроде ион переносит с собой некоторый электрический заряд. Это значит, что полный заряд, перенесенный всеми ионами, должен быть пропорционален полному числу ионов, осевших на электродах, т. е. массе выделенного вещества. А это и есть первый закон Фарадея. Так же естественно и просто объясняется с этой точки зрения и второй закон Фарадея, дающий возможность вычислить электрический заряд, связанный с каждым ионом.

Отметим, что название «ион» введено Фарадеем (от греческого слова «ион» — идущий). Ионы, заряженные положительно и выделяющиеся на катоде, Фарадей назвал катионами, ионы, выделяющиеся на аноде,— анионами.

Опыт показал, что водород и металлы всегда выделяются на катоде; это значит, что в электролитах водород и металлы образуют положительные, ионы.

2.2 Движение ионов в электролитах

Движение ионов в электролитах в некоторых случаях может быть показано весьма наглядно.


Рис. 2. Опыт, показывающий движение ионов. Листок фильтровальной бумаги пропитан раствором электролита и фенолфталеина, ab — нитка, смоченная раствором электролита

Пропитаем листок фильтровальной бумаги раствором электролита (сернокислого натра, Na2SO4) и фенолфталеина и поместим на стеклянную пластинку (рис. 2).

Поперек бумаги положим обыкновенную белую нитку, смоченную раствором едкого натра (NaOH). Бумага под ниткой окрасится в малиновый цвет благодаря взаимодействию ионов гидроксила (ОН) из NaOH с фенолфталеином. Затем прижмем к краям листка проволочные электроды, присоединенные к гальваническому элементу, и включим ток.

Ионы гидроксила из едкого натра начнут двигаться к аноду, окрашивая бумагу в малиновый цвет. По скорости перемещения малинового края можно судить о средней скорости движения ионов под влиянием электрического поля внутри электролита. Опыт показывает, что эта скорость пропорциональна напряженности поля внутри электролита. При заданном поле эта скорость для разных ионов несколько различна. Но, в общем, она невелика и для обычно применяющихся полей измеряется сотыми и даже тысячными долями сантиметра в секунду.



Информация о работе «Электролиты и их свойства»
Раздел: Химия
Количество знаков с пробелами: 73378
Количество таблиц: 4
Количество изображений: 1

Похожие работы

Скачать
53287
0
6

... с другими растворителями рассмот­ренные закономерности сохраняются, но имеются и отступления от них, например на кривых λ-с часто наблюдается минимум (аномальная электропроводность).                  2. Подвижность ионов Свяжем электропроводность электролита со скоростью движе­ния его ионов в электрическом поле. Для вычисления электропро­водности достаточно подсчитать число ионов, ...

Скачать
442397
6
13

... с кислородом, восстановлением - отнятие кислорода. С введением в химию электронных представлений понятие окислительно-восстановительных реакций было распространено на реакции, в которых кислород не участвует. В неорганической химии окислительно-восстановительные реакции (ОВР) формально могут рассматриваться как перемещение электронов от атома одного реагента (восстановителя) к атому другого ( ...

Скачать
125739
1
12

... при изучении синтеза новых материалов и процессов ионного транспорта в них. В чистом виде такие закономерности наиболее четко прослеживаются при исследовании монокристаллических твердых электролитов. В то же время при использовании твердых электролитов в качестве рабочих сред функциональных элементов необходимо учитывать, что нужны материалы заданного вида и формы, например в виде плотной керамики ...

Скачать
53910
2
0

... 17-25 кг/т алюми­ния, что на ~ 10-15 кг/т выше по сравнению с результатами для пес­чаного глинозёма. В глинозёме, используемом для производства алюминия, должно содержаться минимальное количество соединений железа, кремния, тяжелых металлов с меньшим потенциалом выделения на катоде, чем алюминий, т.к. они легко восстанавливаются и перехо­дят в катодный алюминий. Нежелательно также присутствие в ...

0 комментариев


Наверх