2H+ + 2e ® H20 1 окислитель, восстановление
Сущность окислительно-восстановительных процессов состоит в переходе валентных электронов от восстановителя к окислителю. При окислительно-восстановительных реакциях одновременно протекают два взаимосвязанных процесса: окисление и восстановление.
Окисление ― это процесс отдачи электрона. Этот процесс сопровождается повышением степени окисления элемента. Вещество, отдающее электрон, называется восстановителем.
Восстановление ― это процесс присоединения электронов. Этот процесс сопровождается понижением степени окисления элемента. Вещество, принимающее электрон, является окислителем.
Состояние атома в молекуле характеризуется с помощью понятия «степени окисления».
Под степенью окисления понимают заряд атома элемента в соединении, вычисленный из предположения о том, что молекула состоит только из ионов.
Степень окисления ― понятие условное, т.к. большинство соединений не являются ионами, чаще встречаются соединения с ковалентной связью. Степень окисления ― величина переменная. Вычисление степени окисления производится на основании того, что молекула любого вещества в целом электронейтральна, т.е. алгебраическая сумма степеней окисления всех атомов в молекуле равна нулю. Степень окисления атома обозначается арабскими цифрами со знаком (+) или (–) после цифры.
В простых веществах (О2, Н2, N2) степень окисления элемента всегда равна нулю, так как в этих соединениях электронная плотность равномерно распределена между атомами в молекуле и не наблюдается одностороннего оттягивания электронных пар, участвующих в образовании химических связей. В простейших ковалентных соединениях значение положительной степени окисления элемента соответствует числу оттянутых от атома связывающих электронных пар, а величина отрицательной степени окисления ― числом притянутых электронных пар.
В соединениях некоторые элементы проявляют всегда постоянную степень окисления, но для большинства элементов она в различных соединениях различна. В каждом конкретном случае степень окисления рассчитывается по формуле соединения.
Для определения степени окисления элементов в химических соединениях следует руководствоваться следующими положениями:
1. Постоянную степень окисления имеют щелочные металлы (+1), щелочноземельные металлы (+2), фтор (-1). Для водорода в большинстве соединений характерна степень окисления 1+, а в гидридах металлов и в некоторых других соединениях она равна 1-. Кислород в соединениях проявляет главным образом степень окисления 2-, к исключениям относятся пероксидные соединения, степень окисления кислорода в которых равна 1-, и фторид кислорода OF2, в котором она равна 2+.
2. Так как молекула электронейтральна, то алгебраическая сумма степеней окисления атомов элементов с учетом состава молекулы равна нулю.
Принимая во внимание это положение, легко определить степень окисления элементов в соединении. Для этого надо знать формулу соединения и степени окисления других элементов, входящих в состав этого соединения.
Например, необходимо вычислить степень окисления серы в серной кислоте:
Н2SO4 (1+)·2 + X + (2-)·4 =0 X=6+
Находим, что степень окисления серы равна 6+.
3. Степень окисления элементов в молекулах простых веществ О2, Сl2 и т.п. равна нулю.
4. Степень окисления металлов в атомарном состоянии согласно рентгенографическим исследованиям, установившим равномерное
распределение электронной плотности в них, также равна нулю (Сг, Zn и т.п.).
5. Понятие о степени окисления является условным и не всегда характеризует настоящее состояние атомов в соединениях, но оно весьма удобно и полезно при классификации различных соединений, рассмотрении окислительно-восстановительных процессов, предсказания направления течения и продуктов химических реакций и т.д.
Составление уравнений ОВР
Для составления уравнений окислительно-восстановительных реакций обычно используют два метода:
1) метод электронного баланса,
2) электронно-ионный метод.
При расчете коэффициентов в окислительно-восстановительных реакциях пользуются правилом электронного баланса: суммарное число электронов, теряемых восстановителем, должно быть равно суммарному числу электронов, приобретаемых окислителем.
В данном руководстве мы остановимся на рассмотрении метода электронного баланса.
Метод электронного баланса
Метод электронного баланса основан на определении общего числа электронов, перемещавшихся от восстановителя к окислителю. Для составления уравнения окислительно-восстановительной реакции необходимо, прежде всего, знать химические формулы исходных веществ и получающихся продуктов. Исходные вещества нам известны, а продукты реакции устанавливаются либо экспериментально, либо на основании известных свойств элементов. Участие воды в реакции выясняется при составлении уравнения.
При составлении уравнения окислительно-восстановительной реакции необходимо соблюдать следующую логическую последовательность операций: рассмотрим реакцию взаимодействия Sb2S5 и HNO3.
1. Устанавливаем формулы веществ, получающихся в результате реакции: Sb2S5 + HNO3 = H3SbO4+NO+H2SO4 .
... , а в нейтральных и щелочных растворах ионы О реагируют с образованием гидроксид-ионов НОН + О = 2ОН . Применяются в основном два метода составления уравнений окислительно-восстановительных реакций: 1) электронного баланса – основан на определении общего количества электронов, перемещающихся от восстановителя к окислителю; 2) ионно-электронный – предусматривает раздельное ...
... окисления химических элементов. Подчёркнуты химические элементы, в которых изменились степени окисления. 2.Составляем электронные уравнения, в которых указываем число отданных и принятых электронов. За вертикальной чертой ставим число электронов, перешедших при окислительном и восстановительном процессах. Находим наименьшее общее кратное ( взято в красный кружок). Делим это ...
... электроны, понижает свою степень окисления, восстанавливается, а вещество Red2 с меньшим сродством к электрону (восстановитель) окисляется. Окисленная и восстановленная формы реагирующих в ОВР веществ образуют окислительно-восстановительные (оксред-, редокс-) пары ОХ1/Red1 и OX2/Red2, а превращения типа OX+ze - Red называют оксред - (редокс) - переходами или окислительно-восстановительными ...
... - + 14H+ → 2MnO4- + 5Bi3+ + 7H2O №37: 3HNO2 = HNO3 + 2NO + H2O Восстановитель: HNO2 Окислитель: HNO2 Данная окислительно-восстановительная реакция относится к реакциям диспропорционирования, т.к. молекулы одного и того же вещества (HNO2) способны окислять и восстанавливать друг друга. Это происходит потому, что вещество HNO2 содержит в своем составе атомы азота в промежуточной ...
0 комментариев