Задача 4
С помощью метода наименьших квадратов подобрать параметры a и b линейной функции y = a + bx, приближенно описывающей опытные данные из соответствующей таблицы. Изобразить в системе координат заданные точки и полученную прямую.
xi | 0,0 | 0,2 | 0,4 | 0,6 | 0,8 | 1,0 |
yi | 0,9 | 1,1 | 1,2 | 1,3 | 1,4 | 1,5 |
Система нормальных уравнений
в задаче
n = 6
Тогда
решая ее получаем .
y = 0,5714x + 0,9476
Задача 5
Найти неопределенный интеграл
РешениеОтвет:
Задача 6
Найти неопределенный интеграл
РешениеОтвет:
Задача 7
Найти неопределенный интеграл, применяя метод интегрирования по частям
РешениеОтвет:
Задача 8
Вычислить площадь, ограниченную заданными параболами
РешениеТочки пересечения по х: х = -1, х = 5.
Площадь фигуры найдем из выраженияОтвет:
Задача 9
Найти общее решение дифференциального уравнения первого порядка
Решение
Разделим переменные
Проинтегрируем
Ответ:
Задача 10
Найти частное решение линейного дифференциального уравнения первого порядка, удовлетворяющее начальному условию
Решение:
Запишем функцию y в виде произведения y = u * v. Тогда находим производную:
Подставим эти выражения в уравнение
Выберем v таким, чтобы
Проинтегрируем выражение
,
Найдем u
,
,
,
,
Тогда
Тогда
Ответ:
Задача 11
Исследовать на сходимость ряд:
а) с помощью признака Даламбера знакоположительный ряд
Решение Проверим необходимый признак сходимости ряда
|
|
|
Используем признак Даламбера
Ответ: ряд расходится
б) с помощью признака Лейбница знакочередующийся ряд
РешениеПроверим необходимый признак сходимости ряда
|
|
|
По признаку подобия
данный ряд аналогичен гармоническому ряду начиная с пятого члена, таким образом, т.к. гармонический ряд расходится, то и исходный ряд расходится.
Ответ: ряд расходится
в) Найти радиус сходимости степенного ряда и определить тип сходимости ряда на концах интервала сходимости
Решение
Используем признак Даламбера:
При х =5 получим ряд
Ряд знакопостоянный, lim Un = n
Ряд расходится, так как состоит из суммы возрастающих элементов, каждый из которых больше 1.
При х = -5 получим ряд
Ряд знакочередующийся, lim Un = n
|Un| > |Un+1| > |Un+2| … - не выполняется.
По теореме Лейбница данный ряд расходится
Ответ: Х Î (-5; 5)
Задача 12
Вычислить определенный интеграл с точностью до 0,001 путем предварительного разложения подынтегральной функции в ряд и почленного интегрирования этого ряда
Решение
В разложении функции sin(x) в степенной ряд
заменим . Тогда получим
Умножая этот ряд почленно на будем иметь
Следовательно
Ответ: » 0,006.
Похожие работы
... численных методов (при решении реальных, а не учебных задач!) предполагает использование компьютеров с достаточным быстродействием. Использование для численного решения дифференциальных уравнений компьютерного пакета MathCAD предполагает знание алгоритма работы численных методов для разумного их применения (знание границ применимости, оценки точности, затрат компьютерных ресурсов и др.). Дело в ...
... с единицами измерений физических величин в системе MathCAD? 11. Подробно охарактеризуйте текстовые, графические и математические блоки. Лекция №2. Задачи линейной алгебры и решение дифференциальных уравнений в среде MathCAD В задачах линейной алгебры практически всегда возникает необходимость выполнять различные операции с матрицами. Панель операторов с матрицами находится на панели Math. ...
... = cos(aּπּt) и нулевых начальных условиях; 3. Выводы по работе №3 В процессе данной практической работы я изучил возможности математического пакета MathCad в среде Windows для решения дифференциальных уравнений N-го порядка, используемых в инженерных расчетах электротехнических систем. Были выполнены численные методы решения дифференциальных уравнений N-го порядка. Заданное ...
... значениями и корнями дифференциального уравнения Y(I), квадрат разности, а также производит их суммирование. Далее находится величина погрешности аппроксимации и все данные выводятся на экран. Общая программа решения дифференциального уравнения с последующей аппроксимацией результатов представлена на рис. 7 вместе с программой решения дифференциального уравнения, так как из нее получают значения ...
0 комментариев