Курсовая работа
"Решетки субнормальных и -субнормальных подгрупп"
Введение
В теории конечных групп одним из центральных понятий является понятие -субнормальной подгруппы. Изучению свойств субнормальных подгрупп конечных групп положило начало в 1939 г. известная работа Виландта [10], оказавшая огромное влияние на развитие всей теории конечных групп в последующие годы.
В первом разделе курсовой работы изучаются основные положения теории субнормальных подгрупп. Важнейшим достижением данной теории является результат Виландта о том, что множество всех субнормальных подгрупп любой конечной группы образует решетку.
Формации, т.е. классы групп, замкнутые относительно фактор-групп и подпрямых произведений, всегда находились в поле деятельности исследователей по теории конечных групп. Однако вплоть до 1963 г. формационное развитие теории конечных групп шло лишь по пути накопления фактов, относящихся к различным конкретным формациям, из которых наиболее популярными были формация разрешимых групп и ее подформации, составленные из абелевых, нильпотентных и сверхразрешимых групп. Хотя теория конечных групп никогда не испытывала недостатка в общих методах, идеях и нерешенных проблемах, все же обилие полученных результатов с неизбежностью привело к необходимости разработки новых общих методов и систематизирующих точек зрения. Толчок, произведенный работой Гашюца [8], вызвал целую лавину исследований и привел к возникновению нового направления – теории формаций.
В теории формаций одним из важнейших понятий является понятие -субнормальных подгрупп, которое является естественным расширением субнормальных подгрупп. Поэтому, конечно, возникает задача о построении теории
-субнормальных подгрупп, аналогичной теории субнормальных подгрупп Виландта.
Во втором разделе курсовой работы рассматриваются минимальные не -группы.
В третьем разделе приводится описание локальных наследственных формаций, обладающих решеточным свойством для -субнормальных подгрупп.
1. Субнормальные подгпруппы и их свойства
Определение. Пусть – подгруппа группы
. Цепь подгрупп
в которой для любого
,
,…,
, называется субнормальной
-цепью, а число
– длиной этой цепи. Наименьшее
, при котором существует хотя бы одна субнормальная
-цепь длины
, называется дефектом подгруппы
в
и обозначается через
.
Определение. Пусть – подгруппа группы
. Если существует хотя бы одна субнормальная
-цепь, то подгруппа называется субнормальной, обозначается
.
Лемма. Если субнормальна в
, и
субнормальна в
, то
субнормальна в
.
субнормальна в
, следовательно, по определению субнормальной подгруппы существует субнормальная
-цепь
субнормальна в
, следовательно, существует субнормальная
-цепь
Таким образом, мы получили субнормальную -цепь
то есть субнормальна в
по определению. Лемма доказана.
Теорема. Если подгруппа субнормальна, но не нормальна в
, то существует такой элемент
, что
Доказательство. Пусть – дефект подгруппы
в группе
. Рассмотрим субнормальную
-цепь длины
:
Из того, что не нормальна в
, следует, что
.
не нормальна и в
, иначе мы получаем противоречие с тем, что
– дефект подгруппы
в группе
, так как в этом случае подгруппу
в цепи можно было опустить. Поэтому существует элемент
такой, что
. Теперь имеем
Так как , то
. С другой стороны,
и
, откуда получаем
. Теорема доказана.
Определение. Пусть – субнормальная подгруппа дефекта
в
. Субнормальная
-цепь
называется канонической, если для любой субнормальной -цепи
имеет место ,
,
,…,
.
Другими словами, каноническая субнормальная цепь входит почленно в любую другую субнормальную цепь той же длины.
Теорема. Если субнормальна в
, то существует единственная каноническая субнормальная
-цепь.
Доказательство. Пусть – дефект подгруппы
в группе
. Будем рассматривать все возможные субнормальные
-цепи длины
.
все субнормальные -цепи длины
(
– второй индекс). Положим
. Так как
, то для любого
,
,…,
мы имеем
Таким образом, цепь
является субнормальной -цепью длины
и, следовательно, не имеет повторений. Так как
при любых
и
, то теорема доказана.
Теорема. Если субнормальна в
и
– подгруппа
, то пересечение
есть субнормальная подгруппа
.
Доказательство. Рассмотрим субнормальную -цепь минимальной длины
:
Положим . Получаем цепь
Ясно, что она будет субнормальной, так как . Действительно, пусть
, значит,
и
. Тогда для любого
, так как
и
.
Мы получили субнормальную -цепь. Теорема доказана.
Следствие. Пусть и
– подгруппы группы
. Если
субнормальна в
и
– подгруппа
, то
субнормальна в
.
Доказательство. Пусть и цепь
является субнормальной -цепью.
Положив , получим субнормальную
-цепь
что и требовалось.
Теорема. Пусть субнормальна в
и
субнормальна в
. Тогда пересечение
есть субнормальная подгруппа в
.
Доказательство. Пусть – наибольший из дефектов подгрупп
и
в группе
. Очевидно, существует (возможно, с повторениями) цепи
Положим ,
,
,…,
. Из
,
следует, что
нормальна в
. Следовательно, цепь
является субнормальной -цепью, что и доказывает теорему.
Лемма. Если субнормальна в
, а
– нормальная подгруппа группы
, то произведение есть субнормальная подгруппа группы
.
Доказательство. субнормальна в
, следовательно, существует субнормальная
-цепь
Следовательно, цепь
будет субнормальной.
Действительно, так как и
, то
. Лемма доказана.
Лемма. Если подгруппы и
субнормальны в
и
, топроизведение
есть субнормальная подгруппа группы
.
Доказательство. Если нормальна в
, то результат следует по лемме 1.9.
Предположим, что не нормальна в
, то есть
. Будем считать, что теорема верна для субнормальных подгрупп с дефектом меньшим
. Таким образом, если
и
субнормальны в
причем
и
, то по индуктивному предположению
субнормальна в
.
Пусть – каноническая субнормальная
-цепь. Так как
нормализует подгруппу
, то для любого
цепь
будет субнормальной -цепью. По свойству канонической субнормальной
-цепи
, а значит,
для любого
,
,…,
(по определеделению).
Следовательно, содержится в
для любого
. Так как
и
, то по индукции
субнормальна в
. По следствию 1.7.1
субнормальна в
. Так как
и
, то
. Таким образом,
,
, а значит, по лемме 1.9 подгруппа
субнормальна в
. К тому же
, то мы получаем
. Лемма доказана.
Теорема. Если и
– субнормальный подгруппы группы
, то
есть также субнормальная подгруппа
.
Доказательство. Положим . Среди субнормальных подгрупп группы
, содержащихся в
, выберем подгруппу
, имеющю наибольший порядок. По следствию 1.7.1
субнормальна в
. Докажем, что
нормальна в
. Предположим противное, то есть что
не нормальна в
. Тогда по теореме 1.4 найдется такой элемент
, что
,
и
. Так как
субнормальна в
и
, то
субнормальна в
. Получается следующая ситуация:
и
субнормальны в
,
. По лемме 1.10
субнормальна в
. Ввиду выбора
отсюда следует
, что противоречит
.
Итак, нормальна в
, а значит,
и
нормализуют подгруппу
. По лемме 1.10
и
субнормальны в
. Так как
и
, то ввиду выбора
получаем
. Следовательно,
, откуда вытекает, что
. Теорема доказана.
Объединим теоремы 1.8 и 1.11 в один результат.
Теорема (Виландт). Множество всех субнормальных подгрупп группы образует подрешетку решетки
.
Отметим одно часто используемое приложение теорем 1.4 и 1.12.
Теорема. Пусть – некоторое непустое множество субнормальных подгрупп группы
, удовлетворяющее следующим условиям:
1) если и
, то
;
2) если ,
,
,
, то
.
Тогда для любой подгруппы
.
Доказательство. Возьмем произвольную подгруппу из
. Если
не нормальна в
, то по теореме 1.4 найдется такой элемент
, что
,
,
. По условиям 1) и 2)
,
. Если
не нормальна в
, то найдется
такой, что
,
,
. Тогда
и
. Если
не нормальна, то описанную процедуру применяем к
. Так как
конечна, то этот процесс завершится построением нормальной подгруппы
, представимой в виде
, где
– некоторые элементы из
. Очевидно,
, и теорема доказана.
Следствие. Если – непустой радикальный класс, то
содержит все субнормальные
-подгруппы группы
.
Доказательство. Пусть – множество всех субнормальных
-подгрупп из
. Ввиду теоремы 1.12 легко заметить, что
удовлетворяет условиям 1) и 2) теоремы 1.13.
Следствие. Для любой субнормальной подгруппы группы
справедливы следующие утверждения:
1) если –
-группа, то
;
2) если нильпотентна, то
;
3) если
-нильпотентна, то
;
4) если разрешима, то
.
2. Минимальные не -группы
Лемма [3]. Пусть , где
– локальная формация. Тогда справедливы следующие утверждения:
1) группа монолитична с монолитом
2) –
-группа для некоторого простого
;
3) –
-эксцентральный главный фактор
;
4) ;
5) если группа неабелева, то ее центр, коммутант и подгруппы Фраттини совпадают и имеют экспоненту
;
6) если абелева, то она элементарна;
7) если , то
– экспонента
; при
экспонента
не превышает 4;
8) для любой -абнормальной максимальной подгруппы
из
имеет место
9) любые две -абнормальные максимальные подгруппы группы
сопряжены в
;
10) если и подгруппа
содержит
, то
для любого полного локального экрана
формации
;
11) если –
-абнормальная максимальная подгруппа группы
и
– некоторый полный локальный экран
, то
– минимальная не
-группа и либо
, либо
.
Доказательство. 1) Пусть – минимальная нормальная подгруппа из
такая, что
. Очевидно, что
. Противоречие. Итак,
– минимальная нормальная подгруппа
. Так как
– формация, то, нетрудно заметить, что
– единственная минимальная нормальная подгруппа из
. А это значит, что
Отсюда следует, что
2) Выше мы показали, что – главный
-фактор. Покажем, что
–
-группа. Предположим противное. Пусть простое число
делит
, но не делит
. По лемме 4.4 из [5]
, где
– содержащаяся в
силовская
-подгруппа из
. Тогда
Отсюда и из насыщенности получим
. Но тогда
, что невозможно.
Пусть – главный фактор группы
. Ввиду 2)
является
-группой и
. Следовательно, каждая
-абнормальная масимальная подгруппа группы
является
-нормализатором группы
. Так как
-нормализатор группы
покрывает только
-центральные главные факторы, то мы получаем, что
-гиперцентральна в
. Согласно следствию 9.3.1 из [5]
. Отсюда следует, что
, т.е.
.
Обозначим через коммутант группы
. Так как
–
-корадикал группы
, то по теореме 11.6 из [5] каждый главный фактор группы
на участке от
до
-эксцентрален. Отсюда и из
-гиперцентральности
заключаем, что
. Так как
то мы получаем тaкже рaвенство . Таким образом, утверждения 2) – 6), 9) доказаны.
Докажем 7). Предположим, что неабелева. Пусть
– произвольный элемент из
. Ввиду 4)
, причем
. Следовательно,
для всех элементов ,
из
. Это означает, что
имеет экспоненту
. Учитывая это и то, что
содержится в
, получаем для любых
, из
при
:
Значит, отображение является
-эндоморфизмом группы
. Так как
то
-гиперцентральна в
. Вспоминая, что
–
-эксцентральный главный фактор, получаем равенство
. Так как
имеет экспоненту
, то утверждение 7) при
доказано.
Пусть . Тогда
где . Рассматривая отображение
как и выше получаем, что
. Значит
имеет экспоненту не больше 4.
Докажем 8). Выше мы доказали, что . Пусть
. Тогда в
найдется такая максимальная подгруппа
, что
. Так как
, то
. Отсюда
. Противоречие. Итак,
. По теореме 9.4 из [5] имеем
для любой
-абнормальной максимальной подгруппы
группы
. Нетрудно показать, что
.
По теореме 7.11 из [5],
Так как , то
Ввиду того, что и
– главный фактор
, имеем
. Итак,
. Пусть
– любая
-абнормальная максимальная подгруппа группы
. Тогда
. Ясно, что
Не ограничивая общности, положим . Тогда
– единственная минимальная нормальная подгруппа
. Легко видеть, что
и
. Но
–
-группа. Значит,
. По условию
. Следовательно, ввиду полноты экрана
имеет место
то . Таким образом, всякая собственная подгруппа группы
принадлежит
. Допустим, что
. Тогда
и поэтому . Полученное противоречие показывает, что
, т.е.
– минимальная не
-группа.
Предположим теперь, что . Покажем, что
. Не теряя общности, можно положить, что
. Тогда
,
. Пусть
, где
и
, где
. Для всякого
через
обозначим подгруппу
. Предположим, что все
отличны от
. Так как
, то
– дополнение к
в
. Если
для всех различных
и
, то
и поэтому . Противоречие. Значит
для некоторых различных
и
. Из последнего вытекает
что невозможно. Полученное противоречие показывает, что для некоторого
и, следовательно,
. Лемма доказана.
Лемма [4]. Пусть – наследственная локальная формация,
– такая нормальная подгруппа группы
, что
. Тогда
равносильно
.
Доказательство. Пусть . Тогда
, и если
– произвольная максимальная подгруппа
, то
, а значит, и
принадлежит
. Следовательно,
.
Предположим теперь, что . Понятно, что
.Пусть
– произвольная максимальная подгруппа
, тогда
. Пусть
– произвольный
-главный фактор из
. Обозначим
. Пусть
– максимальный внутренний локальный экран формации
, и пусть
. Так как
, то
. Покажем, что
. По лемме 8.7 из [6] формация
наследственна. Следовательно, если
, то сразу получим
. Если же
, то
вытекает из изоморфизма
. Итак, всякий
-главный фактор из
,
-централен в
. Значит,
. Таким образом,
. Лемма доказана.
Лемма [3]. Пусть – локальная наследственная формация,
– некоторый ее полный экран. Группа
принадлежит
тогда и только тогда, когда выполняются следующие два условия:
1) ;
2) , где
– главный
-фактор группы
,
– минимальная не
-группа.
Доказательство. Необходимость вытекает из леммы 2.1.
Достаточность. Пусть и
– произвольные максимальные подгруппы
. Покажем, что
. Если
-абнормальна, то ввиду леммы 2.1 имеем
. Значит,
. Пусть
. По условию
Следовательно, и по лемме 2.1
–
-группа. Значит по лемме 8.2 из [6]
. Итак,
. Применяя теперь лемму 2.1 получаем, что
. Лемма доказана.
Лемма [3]. Пусть – локальная формация, имеющая постоянный наследственный локальный экран
. Тогда справедливы следующие утверждения:
1) для любого
из
;
2) тогда и только тогда, когда
для любого
из
,
– главный
фактор
,
.
Доказательство. 1) Пусть – произвольная группа из
. Покажем, что
. Предположим противное. Пусть
– подгруппа наименьшего порядка из
, не принадлежащая
. Очевидно, что
. Так как
– постоянный экран, то ввиду леммы 4.5 из [5]
для любого
из
. Если
, то из того, что
следует
. Получили противоречие. Итак,
– собственная подгруппа из
. Но тогда
, что невозможно.
2) Пусть . Покажем, что
. Так как
то, не ограничивая общности, можно считать, что . Пусть
– произвольная
-абнормальная максимальная подгруппа группы
. Тогда по лемме 2.1
, где
. Очевидно, что
. Отсюда следует, что
–
-группа. Так как
и
– постоянный экран, то
. Пусть
– произвольная собственная подгруппа из
. Так как формация
наследственна, то
. Кроме того,
. Отсюда
. Следовательно,
Если теперь , то
. Отсюда нетрудно заметить, что
. Противоречие. Итак,
. Из леммы 2.1 следует, что
есть главный -фактор группы
.
Пусть теперь . Очевидно, что
. Пусть
– собственная подгруппа из
.Рассмотрим подгруппу
. Если
, то тогда
Согласно пункту 1 . Пусть
. Тогда
– собственная подгруппа группы
. Тогда
Отсюда . А это значит, что
. Итак,
. Так как
, то по лемме 2.1
. Лемма доказана.
Лемма. Пусть – непустая наследственная формация. Тогда:
1) если – подгруппа группы
и
, то
-субнормальна в
;
2) если
-субнормальна в
,
– подгруппа группы
, то
-субнормальна в
;
3) если и
-субнормальные подгруппы
, то
–
-субнормальная подгруппа
;
4) если
-субнормальна в
, а
-субнормальна в
, то
-субнормальна в
;
5) если все композиционные факторы группы принадлежат формации
, то каждая субнормальная подгруппа группы
является
-субнормальной;
6) если –
-субнормальная подгруппа группы
, то
-субнормальна в
для любых
.
Лемма. Пусть – непустая формация,
– подгруппа группы
,
– нормальная подгруппа из
. Тогда:
1) если
-субнормальна в
, то
-субнормальна в
и
-субнормальна в
;
2) если , то
-субнормальна в
тогда и только тогда, когда
-субнормальна в
.
... групп с заданной системой перестановочных и обобщенно перестановочных подгрупп вполне актуальна, и дальнейшей ее реализации посвящена данная работа. 1. Классификация групп с перестановочными обобщенно максимальными подгруппами Результаты, связанные с изучением максимальных подгрупп, составили одно из самых содержательных направлений в теории конечных групп. Это связано прежде всего с тем, ...
... групп и . Теорема 1.6 (вторая о изоморфизме) Если и - нормальные подгруппы группы , причем , то изоморфна . Лемма 3.1 Пусть - формация, . Тогда Лемма 20.6. Пусть - подгрупповой функтор и - группа. Если и , тогда . Лемма 20.7. Пусть , - элементарно абелевы -группы с . Тогда имеет подгруппу такую, что . Теорема. Пусть - такой набор конгруэнций -алгебры A, что . Пусть прямое ...
... 13-A]. 2. Получено описание наследственных насыщенных сверхрадикальных формаций, критические группы которых разрешимы [20-A]. 3. В классе конечных разрешимых групп получено описание наследственных насыщенных формаций , замкнутых относительно произведения обобщенно субнормальных -подгрупп взаимно простых индексов [18-A]. 4. Доказано, что любая разрешимая 2-кратно насыщенная формация , замкнутая ...
... -подгруппами, индексы которых взаимно просты, наследственно насыщенным формациям В данном разделе в классе конечных разрешимых групп получена классификация наследственных насыщенных формаций , замкнутых относительно произведения обобщенно субнормальных -подгрупп, индексы которых взаимно просты. 2.1 Теорема [18-A]. Пусть --- наследственная насыщенная формация, --- ее максимальный внутренний ...
0 комментариев