3. Формации с решеточным свойством
Лемма [1]. Пусть – наследственная формация. Тогда следующие утверждения эквивалентны:
1) обладает решеточным свойством для -субнормальных подгрупп;
2) группа принадлежит , если , – -субнормальные -подгруппы группы ;
3) – формация Фиттинга и всякая -субнормальная -подгруппа группы содержится в -радикале этой группы.
Установим, что из 1) следует 2).
Пусть – контрпример минимального порядка. В этом случае , где -субнормальная -подгруппа группы , , и не принадлежит . Пусть – минимальная нормальная подгруппа группы . Все условия леммы для фактор-групп выполняются, поэтому в силу выбора имеем, что . В виду теоремы 4.3 из [7] формация является насыщенной. Поэтому группа имеет единственную минимальную нормальную подгруппу и .
Если , то – простая группа. Так как и – -субнормальная подгруппа группы , , то либо , либо . Значит, . Противоречие с выбором группы .
Пусть . Рассмотрим подгруппы и . Так как – собственная -субнормальная подгруппа и , то нетрудно видеть, что – собственная подгруппа , . Покажем, что .
Рассмотрим два случая.
1. Пусть – абелева группа. Тогда – -группа, – простое число. Так как и подгруппа -субнормальна в , то по лемме 2.6 получаем , .
2. Пусть – неабелева группа. В этом случае
есть прямое произведение изоморфных неабелевых простых групп и .
Рассмотрим подгруппу . Так как подгруппа -субнормальна в , то ввиду леммы 2.4 и подгруппа -субнормальна в группе . Пусть
Ввиду леммы 2.5 подгруппа -субнормальна в для любого из . Так как формация обладает решеточным свойством для -субнормальных подгрупп, то – -субнормальная подгруппа . Кроме того, из следует, что . Если , то . Получили противоречие с . Значит, . Так как нормальна в , то нормальна в . Но
где – неабелева простая группа и для всех . Поэтому
Из и наследственности формации следует, что . Но тогда . Далее, так как , то по лемме 2.5 подгруппа -субнормальна в . Значит, она -субнормальна и в , . Тогда из получаем что
Пусть – добавление к подгруппе в группе . Так как , то . В силу насыщенности формации из
и
получаем, что . Итак, , и .
Используя тождество Дедекинда, имеем
Если предположить, что , то . В этом случае
Так как , то не может быть -субнормальной подгруппой в . Следовательно, можно считать, что , .
Так как подгруппа -субнормальна в группе и , то из наследственности формации следует, что подгруппа -субнормальна в .
Так как формация обладает решеточным свойством для -субнормальных подгрупп, то – -субнормальная подгруппа группы . Кроме того, из и наследственности формации имеем . Обозначим , , и рассмотрим подгруппу . Если , то , что невозможно ввиду -субнормальности в подгруппы .
Пусть . Из , нормальности в и нормальности в следует, что нормальна в .
Так как
то
Таким образом получаем
Так как , то – подгруппа из . Тогда из -субнормальности в подгрупп и следует, что подгруппа
-субнормальна в . Это невозможно ввиду равенства . Значит, . Противоречие.
Докажем, что из 2) следует 3). Пусть , где – нормальная -подгруппа группы , . Так как
и , то . Из наследственности формации получаем, что подгруппа -субнормальна в . Ввиду леммы 2.6 подгруппа теперь -субнормальна в , . Так как выполняется условие 2) леммы, то
Следовательно, – формация Фиттинга.
Пусть – -субнормальная -подгруппа группы . Ввиду леммы 2.5 подгруппа -субнормальна в для всех . Так как выполняются условия 2) леммы, то
Отсюда следует, что
Наконец установим, что из 3) следует 1). Доказательство проведем индукцией по порядку группы . Пусть и – -субнормальные подгруппы группы и . Если – минимальная нормальная подгруппа группы , то можно считать, что . Учитывая лемму 2.6 по индукции получаем, что – -субнормальная подгруппа группы . На основании леммы 2.6 тогда подгруппа -субнормальна в . Если , то по индукции подгруппа -субнормальна в , и значит, ввиду леммы 2.5 она -субнормальна.
Будем далее считать, что для любой минимальной нормальной подгруппы группы . Ясно, что . Если , то в силу леммы 3.1.3 субнормальна в . Но тогда ввиду [8]
Это означает, что . Противоречие. Значит и . Аналогично доказывается, что . Итак, и .
По условию леммы – формация Фиттинга и , . Следовательно,
Пусть – минимальная нормальная подгруппа группы , содержащейся в . Тогда
Из наследственности формации следует, что – -субнормальная подгруппа группы .
Итак, порождение двух -субнормальных подгрупп и группы -субнормальна в . Ввиду леммы 2.5 – также -субнормальная подгруппа группы . Значит, формация обладает решеточным свойством для -субнормальных подгрупп. Лемма доказана.
Лемма [1]. Пусть – наследственная локальная формация. Если замкнута относительно расширений, то формация обладает решеточным свойством для -субнормальных подгрупп.
Доказательство леммы следует из теоремы 5 работы [9] и теоремы 3.1.7.
Отметим, что из леммы 3.2 следует, что формации и обладают решеточным свойством для -субнормальных подгрупп.
Пусть обозначают некоторое подмножество множества натуральных чисел. Пусть – некоторое семейство классов групп. Обозначим через класс всех групп , представимых в виде
где и , .
Лемма [1]. Справедливы следующие утверждения:
1) пусть – наследственная локальная формация, обладающая решеточным свойством для -субнормальных подгрупп, . Тогда и формация обладает решеточным свойством для -субнормальных подгрупп;
2) пусть – некоторое семейство наследственных локальных формаций и для любых . Тогда и только тогда формация
обладает решеточным свойством для -субнормальных подгрупп, когда для каждого формация обладает решеточным свойством для -субнормальных подгрупп.
Пусть формация обладает решеточным свойством для -субнормальных подгрупп, . Ввиду леммы 3.1 и – формации Фиттинга поэтому из леммы 2.1.3 следует, что также является формацией Фиттинга.
Пусть – -субнормальная подгруппа группы и . Ясно, что подгруппа -субнормальна в для любого . Так как и , то ввиду леммы 3.1 получаем, что и . Следовательно,
Теперь утверждение 1 следует из леммы 3.1.
Докажем утверждение 2). Пусть формация
обладает решеточным свойством для -субнормальных подгрупп. Отметим, что . Отсюда ввиду утверждения 1) настоящей леммы и леммы 3.2 следует, что формация обладает решеточным свойством для - субнормальных подгрупп.
Обратно, пусть для любого формация обладает решеточным свойством для -субнормальных подгрупп. Пусть
Индукцией по порядку группы покажем, что любая группа , где , – -субнормальные -подгруппы группы принадлежат .
Пусть – минимальная нормальная подгруппа группы . Ввиду леммы 2.6 из соображений индукции получаем, что . Так как – насыщенная формация, то имеет единственную минимальную нормальную подгруппу и . Ясно, что
Отметим также, что
где – изоморфные простые группы для .
Докажем, что . Рассмотрим группу . Так как подгруппа -субнормальна в , то . Тогда по индукции
Рассмотрим пересечение . Если
то
Отсюда и из того факта, что – нормальная подгруппа и следует, что .
Пусть . Так как – нормальная подгруппа из , то – нормальная подгруппа из . А это значит, что
Из наследственности формации и получаем, что . Но тогда .
Из строения и
для любых , следует, что для некоторого . Так как
то нетрудно видеть, что группа имеeт -холловскую подгруппу .
Так как , то – -субнормальная подгруппа группы . Так как , и , – -субнормальные подгруппы, то по индукции имеем, что
Отсюда и из ввиду получаем . Аналогично доказывается, что . Таким образом,
Отсюда и из -субнормальности и в нетрудно заметить, что , – -субнормальные подгруппы группы . Из и ввиду наследственности следует, что и . Так как по условию формация обладает решеточным свойством для - субнормальных подгрупп, то ввиду леммы 3.1
Итак, содержит некоторую группу , где , – -субнормальные -подгруппы группы . Следовательно, ввиду леммы 3.1 формация обладает решеточным свойством для -субнормальных подгрупп. Лемма доказана.
Лемма [1]. Пусть – нормально наследственная разрешимая формация. Тогда справедливы следующие утверждения:
1) если в каждой разрешимой группе все -субнормальные подгруппы образуют решетку, то имеет вид
где для любых из ;
2) если – формация из пункта 1), то она обладает решеточным свойством для -субнормальных подгрупп.
1) Покажем, что является либо группой Шмидта, либо группой простого порядка. Очевидно, что и .
Пусть – максимальный внутренний локальный экран формации . Согласно лемме 2.3
где – единственная минимальная нормальная подгруппа группы , ( – простое число), а – максимальная подгруппа группы , являющейся минимальной не -группой.
Докажем, что – циклическая -группа для некоторого простого числа . Допустим противное. Тогда в найдутся по крайней мере две несопряженные максимальные подгруппы и . Рассмотрим в подгруппу , . Ясно, что -субнормальна в , . Из , и по лемме 3.1 получаем, что . Получили противоречие с выбором .
Следовательно, – циклическая группа порядка , где – некоторое простое число, , – натуральное число. Допустим, что . Обозначим через – регулярное сплетение циклических групп и соответственно порядков и .
По теореме 6.2.8 из [2] изоморфна некоторой подгруппе группы . Так как и , то ввиду теоремы 2.4 из [5] .
Рассмотрим регулярное сплетение , где . Тогда , где – элементарная абелева -группа. Так как , то . Из
следует что .
Рассмотрим в подгруппы и , где – база сплетения . Ясно, что -субнормальна в , . Кроме того, . Отсюда
Так как , то по лемме 3.1. Получили противоречие.
Следовательно, и – группа Шмидта. Если и , то по лемме 1.1.6 также является группой Шмидта. Таким образом, любая разрешимая минимальная не -группа является либо группой Шмидта, либо имеет простой порядок. Тогда по лемме 3.1.12 является наследственной формацией.
Покажем, что формация имеет такой локальный экран , что
p(F)p'(F)p(F) Действительно. Пусть – локальный экран формации . Так как для любого простого числа из , то . Покажем обратное.
Пусть – группа минимального порядка из . Так как – наследственная формация и – насыщенная формация, то – минимальная не -группа и . Теперь, согласно лемме 2.3
где – единственная минимальная нормальная подгруппа группы , причем – -группа, , а – минимальная не -группа. Как показано выше является либо группой простого порядка, либо группой Шмидта.
Пусть – группа простого порядка. Так как , то очевидно, что . Противоречие.
Пусть – группа Шмидта. Тогда – группа простого порядка, причем , . Так как , то очевидно, что
Отсюда следует, что . Получили противоречие. Следовательно .
Итак, и – полный локальный экран формации .
Покажем, что либо для любых простых , .
Вначале докажем, что из следует . Допустим противное. Пусть . Рассмотрим точный неприводимый -модуль над полем , который существует по лемме 18.8 из [6].
Возьмем группу . Так как и имеет единственную минимальную нормальную подгруппу, то ввиду леммы 18.8 из [6] существует точный неприводимый -модуль над полем . Рассмотрим группу
Так как
то . Ясно, что . Так как , то найдется такой, что . Заметим, что . Тогда
Так как , то -субнормальна в и -субнормальна в . По лемме 3.1 . Получили противоречие. Таким образом, если , то .
Пусть теперь . Тогда . Предположим, что найдется такое простое число , которое не принадлежит . Рассмотрим точный неприводимый -модуль над полем .
Группа принадлежит ввиду и . Теперь рассмотрим точный неприводимый -модуль . Группа формации не принадлежит, так как . Ясно, что . Рассуждая как и выше, можно показать, что для некоторого , причем подгруппы , -субнормальны в , причем , принадлежат . Отсюда по лемме 3.1 . Получили противоречие.
Следовательно, если , то , а значит . Более того, если
где и , то и , а значит, .
Таким образом, множество можно разбить в объединение непересекающихся подмножеств, т.е. представить в виде , где для любых из и для . Покажем, что
Обозначим
Так как для любого имеет место , то включение очевидно.
Допустим, что множество непусто, и выберем в нем группу наименьшего порядка. Так как – наследственная формация, то . Группа непримарна в силу равенства и локальности формации . Из строения
и нетрудно показать, что – группа Шмидта. Ясно, что . Тогда по теореме 26.1 из [5] , где – элементарная абелева -группа, – некоторые простые числа. Так как , то
Как показано выше, для некоторого номера . Но тогда . Получили противоречие с выбором . Следовательно,
где для всех .
Утверждение 2) следует из лемм 3.2 и 3.3. Лемма доказана.
Из доказанной леммы следует, что разрешимая наследственная локальная формация тогда и только тогда обладает решеточным свойством для -субнормальных подгрупп, когда
Заключение
В курсовой работе рассмотрены решетки субнормальных и -субнормальных подгрупп. Для построения теории решеток -субнормальных подгруп, аналогичной теории решеток субнормальных подгрупп, разработанной Виландтом, используются свойства минимальных не -групп.
В работе рассматриваются условия, при выполнении которых формация будет обладать решеточным свойством.
Список использованных источников
1. Васильев А.Ф., Каморников С.Ф., Семенчук В.Н. О решетках подгрупп конечных групп // Бесконечные группы и примыкающие алгебраические структуры: Тр./ Институт математики АН Украины. – Киев, 1993. – С. 27–54.
2. Коуровская тетрадь (нерешенные вопросы теории групп). Новосибирск: Институт математики СО АН СССР, 1984. – 144 с.
3. Семенчук В.Н. Минимальные не -группы // Алгебра и логика. – 1979. – Т.18, №3. – С. 348–382.
4. Семенчук В.Н. Конечные группы с системой минимальных не -подгрупп // Подгрупповое строение конечных групп: Тр./ Ин-т математики АН БССР. – Минск: Наука и техника, 1981. – С. 138–149.
5. Шеметков Л.А. Формации конечных групп. М.: Наука. – 1978. – 267 с.
6. Шеметков Л.А., Скиба А.Н. Формации алгебраических систем. М.: Наука. – 1989. – 256 с.
7. Bryce R.A., Cossey J. Fitting formations of finite solubla groups // Math.Z. – 1972. – V.127, №3. – P.217–233.
8. Gaschьtz W. Zur Theorie der endlichen auflцsbaren Gruppen. – Math. Z., 1963, 80, №4, С. 300–305.
9. Kegel O.H. Untergruppenverbande endlicher Gruppen, die Subnormalteilorverband echt enthalten // Arch. Math. – 1978. – V.30. – P.225–228.
10. Wielandt H. Eine Verallgemeinerung der invarianten Untegruppen // Math.Z. – 1939.-V.45. – P.209–244.
... групп с заданной системой перестановочных и обобщенно перестановочных подгрупп вполне актуальна, и дальнейшей ее реализации посвящена данная работа. 1. Классификация групп с перестановочными обобщенно максимальными подгруппами Результаты, связанные с изучением максимальных подгрупп, составили одно из самых содержательных направлений в теории конечных групп. Это связано прежде всего с тем, ...
... групп и . Теорема 1.6 (вторая о изоморфизме) Если и - нормальные подгруппы группы , причем , то изоморфна . Лемма 3.1 Пусть - формация, . Тогда Лемма 20.6. Пусть - подгрупповой функтор и - группа. Если и , тогда . Лемма 20.7. Пусть , - элементарно абелевы -группы с . Тогда имеет подгруппу такую, что . Теорема. Пусть - такой набор конгруэнций -алгебры A, что . Пусть прямое ...
... 13-A]. 2. Получено описание наследственных насыщенных сверхрадикальных формаций, критические группы которых разрешимы [20-A]. 3. В классе конечных разрешимых групп получено описание наследственных насыщенных формаций , замкнутых относительно произведения обобщенно субнормальных -подгрупп взаимно простых индексов [18-A]. 4. Доказано, что любая разрешимая 2-кратно насыщенная формация , замкнутая ...
... -подгруппами, индексы которых взаимно просты, наследственно насыщенным формациям В данном разделе в классе конечных разрешимых групп получена классификация наследственных насыщенных формаций , замкнутых относительно произведения обобщенно субнормальных -подгрупп, индексы которых взаимно просты. 2.1 Теорема [18-A]. Пусть --- наследственная насыщенная формация, --- ее максимальный внутренний ...
0 комментариев