Федеральное агентство по образованию

Государственное образовательное учреждение высшего профессионального образования
Вятский государственный гуманитарный университет

Математический факультет

Кафедра алгебры и геометрии

Выпускная квалификационная работа

Связь комбинаторики с различными разделами математики

Выполнила:

студентка V курса математического факультета

Бородулина Юлия Анатольевна

Научный руководитель:

к. ф-м. н., доцент кафедры алгебры и геометрии

Е.М. Ковязина

Рецензент:

к. ф-м. н., доцент кафедры алгебры и геометрии

О.С. Руденко

Допущена к защите в государственной аттестационной комиссии

«___» __________2005 г. Зав. кафедрой Е.М. Вечтомов

«___»___________2005 г. Декан факультета В.И. Варанкина

Киров

2005


Содержание

Введение........................................................................................................... 3

§1. Применение леммы Бернсайда к решению комбинаторных задач......... 5

1.1. Орбиты группы перестановок.......................................................... 5

1.2. Длина орбиты группы перестановок. Лемма Бернсайда................ 5

1.3. Комбинаторные задачи.................................................................... 8

§2. «Метод просеивания».............................................................................. 21

2.1. Формула включения и исключения................................................ 21

2.2. Общий «метод просеивания» или «пропускания через решето». Решето Сильва-Сильвестра..................................................................................................... 23

2.3. Использование общего метода решета в теории чисел................. 23

§3. Разбиение фигур на части меньшего диаметра...................................... 28

§4. «Счастливые билеты».............................................................................. 34

Библиографический список........................................................................... 39


Введение

Область математики, в которой изучаются вопросы о том, сколько различных комбинаций, подчинённых тем или иным условиям, можно составить из заданных объектов называется комбинаторикой. Комбинаторика возникла в XVI веке. Вопросы, касающиеся азартных игр, явились движущей силой в развитии комбинаторики. Сейчас комбинаторные методы применяются как в самой математике, так и вне её – теория кодирования, планирование эксперимента, топология, конечная алгебра, математическая логика, теория игр, кристаллография, биология, статистическая физика, экономика и т.д.

Комбинаторика, пройдя многовековой путь развития, обретя собственные методы исследования, с одной стороны, широко используется при решении задач алгебры, геометрии, анализа, с другой стороны, сама использует геометрические, аналитические и алгебраические методы исследования.

Цель дипломной работы: показать связь комбинаторики с различными разделами математики.

Задачи:

1.   Изучить лемму Бернсайда и решить комбинаторные задачи о раскраске с её применением;

2.   Показать применение метода «просеивания» для подсчёта количества простых и взаимно простых чисел;

3.   Рассмотреть теорему Борсука, которая решает задачу для плоских фигур о разбиении их на части меньшего диаметра;

4.   Решить задачу о «счастливых билетах».

Дипломная работа состоит из четырёх частей:

В § 1 рассмотрена связь теории групп с комбинаторикой: применение группы перестановок к решению комбинаторных задач. Основной используемый факт в этом параграфе – лемма Бернсайда.

В § 2 показан наиболее общий метод пересчёта (известный ещё в XVIII веке), а также приведены примеры его использования в теории чисел.

Параграф 3 посвящён вопросу комбинаторной геометрии – вопросу о разбиении фигуры на несколько меньших частей. Рассмотренная теорема Борсука является тем стержнем, вокруг которого возможно дальнейшее рассмотрение этого вопроса.

В § 4 решается известная задача о счастливых билетах с привлечением методов из математического анализа.


§ 1. Применение леммы Бернсайда к решению комбинаторных задач [3]

1.1. Орбиты группы перестановок

Пусть G – группа перестановок на множестве М={1, 2, …, n}. Подмножество ОМ называется орбитой группы G, если: а) α(a)O для любого αG и любого aO, то есть действие перестановок из G на элементы О не выводит за пределы О; б) любые два элемента из О можно перевести друг в друга некоторой перестановкой из G.

Легко показать, что всякая группа перестановок G={ε=α0, α1, …, αk-1} имеет орбиты.

Орбитами подобного вида исчерпываются все типы орбит, то есть, если О – орбита группы G и аО, то О=О(а).

 Любые две орбиты О(а) и О(b) либо совпадают (если bO(a)), либо не пересекаются (если bO(a)).

Таким образом, множество М распадается в объединение непересекающихся подмножеств – орбит группы G. В связи с разбиением множества М на орбиты группы перестановок G возникают следующие два вопроса:

1) Сколько орбит имеет группа G на множестве М?

2) Какова длина каждой из этих орбит, то есть из скольких элементов они состоят?

Ответим на эти вопросы.


Информация о работе «Связь комбинаторики с различными разделами математики»
Раздел: Математика
Количество знаков с пробелами: 44497
Количество таблиц: 0
Количество изображений: 23

Похожие работы

Скачать
44253
5
4

... наука стала развиваться в XIII веке параллельно с возникновением теории вероятностей, так как для решения вероятностных задач необходимо было подсчитать число различных комбинаций элементов. Первые научные исследования по комбинаторике принадлежат итальянским ученым Дж. Кардано, Н. Тарталье (1499-1557), Г. Галилею (1564-1642) и французским ученым Б. Паскалю (1623-1662) и П. Ферма. Комбинаторику ...

Скачать
64394
2
6

... обучения, школа предоставляет учащимся право выбора предметов по интересам и склонностям. В соответствии с требованиями была разработана программа факультативного курса по теме «Элементы комбинаторики» для 8 класса.   2.2 Программа факультативного курса   Пояснительная записка В математике и ее приложениях часто приходится иметь дело с различного рода множествами и подмножествами: ...

Скачать
20765
3
0

... познания, а не наблюдателем происходящего. При обучении студентов разработке содержания внеурочного мероприятия по математике методисты рекомендуют студентам активно использовать свои знания и опыт по развитию познавательной активности учащихся, приобретенный на занятиях по психолого-педагогическими дисциплинам. Курс: Знания и умения: Психология человека знания о протекании познавательных ...

Скачать
120461
1
0

... при ошибке в его выборе, учитывать по уровневый подход. 4.  Математика должна входить в набор обязательных учебных предметов любого из профилей.2 МАТЕМАТИЧЕСКИЙ ФАКУЛЬТАТИВ КАК ВЕДУЩАЯ ФОРМА ПРОФИЛЬНОГО ОБУЧЕНИЯ МАТЕМАТИКЕ В ОБЩЕОБРАЗОВАТЕЛЬНОЙ ШКОЛЕ2.1. Организационно-педагогические условия успешного функционирования математических факультативов Еще на рубеже XIX и XX вв. некоторые ...

0 комментариев


Наверх