4. Численные методы решения обыкновенных дифференциальных уравнений. Метод Эйлера. Метод Рунге – Кутта

 

1. Метод Эйлера. Дифференциальное уравнение y’=f(x, y) определяет на плоскости так называемое поле направлений, т.е. в каждой точке плоскости, в которой существует функция f(x, y) задает направление интегральной кривой уравнения, проходящей через эту точку. Пусть требуется решить задачу Коши, т.е. найти решение уравнения y’=f(x, y), удовлетворяющее начальному условию y(x0)=y0. Разделим отрезок [x0, X] на n равных частей и положим (X-x0)/n=h (h – шаг изменения аргумента).Допустим, что внутри элементарного промежутка от x0 до x0+h функция y’ сохраняет постоянное значения f(x0,y0,). Тогда  где y1 – значения искомой функции, соответствующее значению х1=x0+h. Отсюда получаем  Повторяя эту операцию, получим последовательные значения функции:


 

Таким образом, можно приближенно построить интегральную кривую в виде ломаной с вершинами Mr (xr; yr), где   Этот метод называется методом ломаных Эйлера, или просто методом Эйлера.

2. Метод Рунге – Кутта. Пусть функция у определяется дифференциальным уравнением y’=f(x, y) при начальном условии y(x0)=y0. При численном интегрировании такого уравнения методом Рунге – Кутта определяют четыре числа:

   

  

Если положить  то можно доказать что  Схема вычислений имеет вид

Добавка


5. Практический раздел

 

1.Решение не линейных уравнений.

1. Отделить корни графический и уточнить один из них методом касательных с точностью  

  

x

0 1 2 3 4 5 6 7
Singf(x) - - - - - - - +

  

   

т.к.  то

 

 

  

x1=6,488

x2=6,401

x3=6,39756

x4=6,397567

2. Решение систем линейных алгебраических уравнений.

1. Решить систему методом Жордана – Гаусса


Информация о работе «Методы решения алгебраических уравнений»
Раздел: Математика
Количество знаков с пробелами: 35539
Количество таблиц: 6
Количество изображений: 3

Похожие работы

Скачать
31486
0
15

... - в методе Ньютона наблюдается ускорение сходимости процесса приближений. 5. Метод касательных (метод Ньютона) Метод касательных, связанный с именем И. Ньютона, является одним из наиболее эффективных численных методов решения уравнений. Идея метода очень проста. Возьмём производную точку x0 и запишем в ней уравнение касательной к графику функции f(x): y=f(x0)+ f ¢(x) (x-x0) (1.5) Графики ...

Скачать
43593
0
0

... решения от численных методов расчёта. Для определения корней уравнения не требуется знания теорий групп Абеля, Галуа, Ли и пр. и применения специальной математической терминологии: колец, полей, идеалов, изоморфизмов и т.д. Для решения алгебраического уравнения n - ой степени нужно только умение решать квадратные уравнения и извлекать корни из комплексного числа. Корни могут быть определены с ...

Скачать
70384
2
19

... математики тригонометрической подстановки и проверка эффективности разработанной методики преподавания. Этапы работы: 1.  Разработка факультативного курса на тему: «Применение тригонометрической подстановки для решения алгебраических задач» с учащимися классов с углубленным изучением математики. 2.  Проведение разработанного факультативного курса. 3.  Проведение диагностирующей контрольной ...

Скачать
20751
0
13

... «проявляется» лишь в процессе преобразований. Очевидность и «завуалированность» новой переменной мы рассмотрим на конкретных примерах во второй главе данной работы. 2. Возможности применения метода замены неизвестного при решении алгебраических уравнений В этой главе выявим возможности применения метода замены неизвестного при решении алгебраических уравнений в стандартных и нестандартных ...

0 комментариев


Наверх