БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

 

Кафедра информатики


РЕФЕРАТ

На тему:

 

«Переключательные функции одного и двух аргументов»


МИНСК, 2008


1.Переключательные функции одного аргумента.

 

Существует четыре переключательные функции одного аргумента, которые приведены в табл. 1.

Таблица 1

Переключательные функции одного аргумента

x

f(x)

0 1 Условное обозначение Название функции

f0(x)

0 0 0 Константа нуль

f1(x)

0 1

x

Переменная x

f2(x)

1 0

Инверсия x

f3(x)

1 1 1 Константа единица

Функция f0(x) тождественно равна нулю. Она называется константой нуль и обозначается f0(x)=0.

Функция f1(x) повторяет значения аргумента и поэтому тождественно равна переменной x.

Функция f2(x) принимает значения, противоположные значениям аргумента: если x=0, то f2(x)=1; если x=1, то f2(x)=0. Эту функцию называют инверсией x или отрицанием x и вводят для нее специальное обозначение f2(x)= .

Функция f3(x) тождественно равна единице. Она называется константой единица и обозначается f3(x)=1.

 

2. Переключательные функции двух аргументов.

Существует шестнадцать различных переключательных функций двух аргументов, каждая из которых определена на четырех наборах. Эти функции представлены в табл. 2.

В число шестнадцати переключательных функций входят функции, рассмотренные в п.1:

f0(x,y) = 0 — константа нуль;

f15(x,y) = 1 — константа единица;

f3(x,y) = x —переменная x;

f5(x,y) = y —переменная y;

f12(x,y) = —инверсия x;

f10(x,y) = —инверсия y;

Таблица 2

Переключательные функции двух аргументов

x

0 0 1 1 Название функции Обозначение

y

0 1 0 1

f0(x,y)

0 0 0 0 Константа нуль 0

f1(x,y)

0 0 0 1 Произведение (конъюнкция)

x∙y; xÙy;x&y

f2(x,y)

0 0 1 0

Функция запрета по y

xDy

f3(x,y)

0 0 1 1

Переменная x

x

f4(x,y)

0 1 0 0

Функция запрета по x

yDx

f5(x,y)

0 1 0 1

Переменная y

y

f6(x,y)

0 1 1 0 Сумма по модулю 2 (логическая неравнозначность)

xÅy

f7(x,y)

0 1 1 1 Логическое сложение (дизъюнкция)

x+y; xÚy

f8(x,y)

1 0 0 0 Операция Пирса (стрелка Пирса)

x¯y

f9(x,y)

1 0 0 1 Эквивалентность (логическая равнозначность)

x~y

f10(x,y)

1 0 1 0

Инверсия y

f11(x,y)

1 0 1 1

 Импликация от y к x

y®x

f12(x,y)

1 1 0 0

Инверсия x

f13(x,y)

1 1 0 1

Импликация от x к y

x®y

f14(x,y)

1 1 1 0 Операция Шеффера (штрих Шеффера)

x½y

f15(x,y)

1 1 1 1 Константа единица 1

Рассмотрим некоторые переключательные функции двух аргументов.

Функция f1(x,y) называется конъюнкцией, или логическим умножением. Таблица истинности этой функции совпадает с таблицей умножения двух одноразрядных двоичных чисел. Можно ввести функцию n аргументов, соответствующую произведению n одноразрядных двоичных чисел. Такая переключательная функция равна единице тогда и только тогда, когда все ее аргументы равны единице. Для конъюнкции справедливы следующие соотношения:

x × 0 = 0;

x × 1 = x;

x × x = x;

x × y = y × x;

x × = 0.

Функция f7(x,y) называется дизъюнкцией или логическим сложением. Эта функция равна нулю только в том случае, когда все ее аргументы равны нулю. Можно ввести функцию n аргументов, соответствующую логическому сложению n одноразрядных двоичных чисел. Такая переключательная функция равна нулю тогда и только тогда, когда все ее аргументы равны нулю. Для конъюнкции справедливы следующие соотношения:

x Ú 0 = x;

x Ú 1 = 1;

x Ú x = x;

x Ú y = y Ú x;

x Ú = 1.

Таблица истинности функции f6(x,y) совпадает с таблицей сложения двух одноразрядных двоичных чисел по модулю два. Можно ввести функцию n аргументов, соответствующую сумме по модулю два n одноразрядных двоичных чисел. Такая переключательная функция определяется следующим условием: она равна единице, если число аргументов, равных единице, нечетно, и равна нулю, если число таких аргументов четно. Приведем некоторые соотношения для суммы по модулю два:

x Å 0 = x;

x Å 1 = ;

x Å x = 0;

x Å x Å x = x;

x Å y = y Å x.

Рассмотренные шестнадцать функций двух аргументов (будем называть их элементарными) позволяют строить новые переключательные функции следующим образом:

·  путем перенумерации аргументов;

·  путем подстановки в функцию новых функций вместо аргументов.

Функцию, полученную из функций f1, f2, …, fk путем применения (возможно многократного) этих двух правил, будем называть суперпозицией функций f1, f2, …, fk. Например, имея элементарные функции инверсии, конъюнкции, дизъюнкции, импликации, запрета, сложения по модулю два, можно составить новую переключательную функцию:

f (x,y,z) = ((Úy)Dz)Å((y®z)×x).

Используя таблицы, определяющие элементарные функции, можно задавать в виде таблицы любую переключательную функцию, являющуюся суперпозицией этих функций.

Пример 1. Представить в виде таблицы функцию

f (x,y,z) = ((Úy)Dz)Å((y®z)×x).

Решение. Функцию f (x,y,z) будем представлять последовательно, записывая в столбцы табл. 1.5 промежуточные результаты, получаемые после выполнения каждой операции:

Таблица 3

Таблица истинности функции f (x,y,z) = ((Úy)Dz)Å((y®z)×x).

x

y

z

(Úy)

(Úy)Dz)

(y®z)

(y®z)×x

((Úy)Dz)Å((y®z)×x)

0 0 0 1 1 1 1 0 1
0 0 1 1 1 0 0 0 0
0 1 0 1 1 1 1 0 1
0 1 1 1 1 0 1 0 0
1 0 0 0 0 0 1 1 1
1 0 1 0 0 0 0 0 0
1 1 0 0 1 1 1 1 0
1 1 1 0 1 0 1 1 1
3. Представление переключательной функции в виде многочленов.

 1. Конституенты. В п. 2 был рассмотрен один из возможных способов представления переключательной функции – задание ее в виде таблицы истинности. В этом разделе будем решать обратную задачу, а именно представление переключательной функции, заданной таблицей истинности, через элементарные функции, образующие базис.

Рассмотрим переключательные функции, называемые конституентами.

Определение 1. Конституентой единицы называют переключательную функцию n аргументов, которая принимает значение, равное единице на одном единственном наборе аргументов.

Из определения следует, что число различных конституент единицы среди функций n аргументов равно 2n. Конституенты единицы обозначаются так: Ki(x1, …, xn), где i – номер набора, на котором конституента равна единице. Например, запись K7(x1, x2, x3, x4) означает функцию четырех аргументов, равную единице на наборе (0111).

Конституента единицы может быть выражена через конъюнкцию всех аргументов, каждый из которых входит в произведение со знаком отрицания или без него. Приведенную выше конституенту единицы можно представить через конъюнкцию аргументов следующим образом:

K7(x1, x2, x3, x4) = .

Чтобы записать в виде произведения конституенту Ki(x1, …, xn), можно воспользоваться следующим правилом: записать n-разрядное двоичное число (n – число аргументов), равное i, и конъюнкцию n переменных; над переменными, места которых совпадают с позициями нулей в двоичном числе i, поставить знак отрицания.

Пример 2. Записать конституенту, равную единице на двенадцатом наборе для функции пяти переменных.

Решение. Пятиразрядное двоичное число, равное двенадцати, записывается в виде: 01100. Запишем произведение пяти аргументов, располагая их в порядке возрастания индексов: x1×x2×x3×x4×x5. Сопоставляя это произведение с двоичным числом 01100, определяем, что знаки отрицания необходимо поставить над первым, четвертым и пятым аргументами:

K12(x1, x2, x3, x4, x5) =.

Определение 3. Конституентой нуля называют переключательную функцию n аргументов, которая принимает значение, равное нулю, на одном единственном наборе аргументов.

Из определения следует, что число различных конституент нуля среди функций n аргументов равно 2n. Конституенты нуля обозначаются так: Mi(x1, …, xn), где i – номер набора, на котором конституента равна нулю. Конституента нуля может быть выражена через дизъюнкцию всех аргументов, каждый из которых входит в произведение со знаком отрицания или без него.

Чтобы записать в виде произведения конституенту Mi(x1, …, xn), можно воспользоваться следующим правилом: записать n-разрядное двоичное число (n – число аргументов), равное i, и дизъюнкцию n переменных; над переменными, места которых совпадают с позициями единиц в двоичном числе i, поставить знак отрицания.

Пример 3. Записать конституенту нуля, равную нулю на двадцать пятом наборе для функции пяти переменных.

Решение. Пятиразрядное двоичное число, равное двадцати пяти, записывается в виде: 11001. Запишем дизъюнкцию пяти аргументов, располагая их в порядке возрастания индексов: x1Úx2Úx3Úx4Úx5. Сопоставляя это произведение с двоичным числом 11001, определяем, что знаки отрицания необходимо поставить над первым, вторым и пятым аргументами:

M25(x1, x2, x3, x4, x5) =.


Информация о работе «Переключательные функции одного и двух аргументов»
Раздел: Математика
Количество знаков с пробелами: 17030
Количество таблиц: 3
Количество изображений: 0

Похожие работы

Скачать
42429
23
2

... значения, получим геометрическое представление функции. Например, булева функция, заданная табл.1, геометрически представляется 3-мерным кубом (рис. 1.в). а) n=1 б) n=2 в) n=3 Рисунок 1- Геометрическое задание булевой функции: а) одной переменной: б) двух переменных; в) трех переменных. При аналитическом способе булева функция задается формулами, т. е. аналитическими выражениями, ...

Скачать
9967
4
1

... схемами с односторонней проводимостью, имеющими конечное число входов и один выход. Простейшие электронные схемы, реализующие элементарные булевы функции (НЕ, И, ИЛИ, ИЛИ-НЕ, И-НЕ), называются логическими элементами (ЛЭ). Аналитическая форма представления булевых функций При решении конкретных технических задач булевы функции, отражающие логические связи, наиболее часто задаются в табличной ...

Скачать
15831
0
0

... — f(x1,x2,x3,x4) = 3-йэтап—f(x1,x2,x3,x4)= что и требовалось получить. Проверить правильность проведенных преобразований можно при помощи пра­вила склеивания. 3. Функционально полные системы логических функций. Анализ принадлежности переключательных функций замкнутым классам показывает, что существуют две переключательные функции f8 и f14, не принадлежащие ни одному классу. Согласно теореме ...

Скачать
61604
22
6

... ответ на этот вопрос положителен. Штрих Шеффера является отрицанием конъюнкции, стрелка Пирса – отрицание дизъюнкции, сумма Жегалкина – отрицание эквивалентности. М. Жегалкин (1869–1947) – российский математик и логик, один из основоположников современной математической логики. Чарльз Пирс (1839–1914) – американский логик, математик и естествоиспытатель. Основоположник семиотики, родоначальник ...

0 комментариев


Наверх