2. Физические задачи. Некоторые применения определенного интеграла при решении физических задач иллюстрируются ниже в примерах.
Пример 4. Скорость прямолинейного движения тела выражается формулой (м/с). Найти путь, пройденный телом за 5 секунд от начала движения.
◄ Так как путь, пройденный телом со скоростью (t) за отрезок времени [t1,t2], выражается интегралом
то имеем:
►
4. Дифференциальные уравнения
Многие физические законы имеют вид дифференциальных уравнений, т. е. соотношений между функциями и их производными. Задача интегрирования этих уравнений — важнейшая задача математики. Одни дифференциальные уравнения удается проинтегрировать в явном виде, т.е. записать искомую функцию в виде формул. Для решения других до сих пор не удается найти достаточно удобных формул. В этих случаях можно найти приближенные решения с помощью вычислительных машин. Мы не будем подробно изучать методы интегрирования дифференциальных уравнений, а только рассмотрим несколько примеров.
Примеры
1. Уравнение механического движения. Пусть материальная точка массы т движется под действием силы F по оси х. Обозначим t время ее движения, и — скорость, а — ускорение. Второй закон Ньютона, а = Fm примет вид дифференциального уравнения, если записать ускорение, а как вторую производную: a=x’’.
Уравнение тх" = F называют уравнением, механического движения, где x = x(t)—неизвестная функция, т и F — известные величины. В зависимости от условий задачи по-разному и записываются различные дифференциальные уравнения.
2. Радиоактивный распад
— масса распадающего вещества. Количество распадающего вещества пропорционально количеству и времени, т.е. при имеем
.
Решение дифференциального уравнения- . Дополнительные условия- , тогда задача
Решение задачи:
3.Движение системы N материальных точек.
Система уравнений Ньютона
,
-масса, - радиус вектор i-ой точки, - сила воздействующая на i-ую точку.
Частный случай колебания маятника
.
При малых колебаниях и тогда уравнение имеет вид:
.
4. Прогибание упругого стержня.
Если стержень однороден, то вдоль стержня постоянное касательное натяжение . Тогда вертикальная сила в точке x, где смещение u(x). Если в каждой точке стержня действует внешняя сила то
.
Откуда
Рассмотрим частный случай , тогда получаем уравнение
и его решение
.
Дополнительные условия (закрепленные концы) - . Тогда задача
.
Ответ:
... (5.16) Непосредственное использование оценок погрешности (5.4), (5.8) и (5.12) неудобно, так как при этом требуется вычисление производных функции f(x). В вычислительной практике используются другие оценки. Вычтем из равенства (5.15) равенство (5.16): Ih/2 – Ih » Chk(2k – 1). (5.17) Учитывая приближенное равенство (5.16), получим следующее приближенное ...
... , которая состоялась 22 февраля 1995 года, обсуждался ход реализации программы информатизации образования на 1994-1995 гг. Был рассмотрен вопрос о совершенствовании организации обучения информатике в общеобразовательной школе на современном этапе. Коллегия постановила признать целесообразной необходимость выделения нескольких этапов в овладении основами информатики и формировании информационной ...
... разработчиками. На сегодняшний день существует широкий спектр программ от простейших, контролирующих до сложных мультимедийных продуктов. 2. Опытно-экспериментальная работа по формированию познавательной потребности у учащихся средствами информационных технологий 2.1 Особенности изучения темы "Интеграл" в школьном курсе математики Выбор темы "Интеграл" неслучаен. Тема "Интеграл" изучается ...
0 комментариев