1.2 Практическое применение методов математической логики

Всякая логическая функция «n» переменных может быть задана таблицей, в левой части которой перечислены все 2n наборов значений переменных (то есть всевозможных наборов двоичных векторов длины «n»), а в правой части приведены значения функции на этих наборах. При любом фиксированном упорядочении наборов значений переменных логическая функция «n» переменных полностью определена вектор-столбцом своих значений, то есть вектором длины 2n. Поэтому число различных логических функций «n» переменных будет . В самом деле, для одного набора значений своих переменных (строка левой части таблицы) значение функции может быть либо 1, либо 0 (две возможности). Число же возможных различных наборов аргументов функции, как уже отмечалось равно 2n, поэтому число различных логических функций будет/1/.

Заданием в данном пункте является построение таблицы истинности для следующего высказывания:

,

Высказыванием называется повествовательное предложение, о котором можно сказать в данный момент, что оно истинно или ложно, но не то и другое одновременно. “Истинность” или “ложность” предложения – это истинностное значение высказывания. Каждому высказыванию сопоставляется переменная, равная 1, если высказывание истинно, и равная 0, если оно ложно. Эти высказывания будут считаться простыми. Из простых высказываний с помощью логических связок могут быть построены составные высказывания. В таблице 1 приведены некоторые логические связки, используемые при задании данной функции (1).

Таблица 1-Логические связки

Название Обозначение
Конъюнкция &
Импликация ®
Сумма по модулю два Å
Штрих Шеффера |
Отрицание Ø
Дизъюнкция Ú
Стрелка Пирса ¯

Правильно построенные составные высказывания называются (пропозиционарными) формулами. Истинностное значение формулы определяется через истинностные значения её составляющих в соответствии с единой таблицей истинности (таблица 2).

Таблица 2-Истиностные значения формул высказывания

Х1

Х2

X1 &X2

X1® X2

X1 ÅX2

X1Ú X2

ØX1

X1¯ X2

0 0 0 1 0 0 1 1
0 1 0 1 1 1 1 0
1 0 0 0 1 1 0 0
1 1 1 1 0 1 0 0

Для того чтобы составить таблицу истинности для формулы, необходимо выполнить последовательность всех логических операций.

, (1)

После последовательного выполнения всех логических операций составляется таблица истинности для данной функции


Таблица 3- Таблица истинности функции (1)

1 2 3 4 5 6 7 8 9 10
x y z &

0 0 0 0 1 1 1 0 0 0
0 0 1 0 1 1 1 0 0 0
0 1 0 0 1 0 1 0 0 1
0 1 1 0 1 0 0 1 1 0
1 0 0 0 1 1 1 0 1 0
1 0 1 1 1 1 1 0 1 0
1 1 0 0 1 0 1 0 1 0
1 1 1 1 1 0 0 1 1 0

 

Приведение функции к конъюнктивным и дизъюнктивным нормальным формам. Конъюнктивным (дизъюнктивным) одночленом от переменных а1, а2, а3,…,аn называется конъюнкция (дизъюнкция) этих переменных или их отрицаний. Формула, равносильная данной формуле алгебры высказываний и являющаяся дизъюнкцией элементарных произведений (конъюнктивных одночленов), называется дизъюнктивной нормальной формой (ДНФ) данной формулы. Формула, равносильная данной формуле алгебры высказываний и являющаяся конъюнкцией элементарных произведений (дизъюнктивных одночленов), называется конъюнктивной нормальной формой (КНФ) данной формулы /2/. Справедливы следующие теоремы: любая булева функция, тождественно не равная нулю, представима и притом единственным образом в виде ДНФ по формуле:

V (2)

Любая булева функция, тождественно не равная единице представима и притом единственным образом в виде КНФ.

L (3).

Любая булева функция представима формулой, в которую входит только конъюнкция, дизъюнкция и отрицание /2/.

Искомая ДНФ для функции (1) имеет вид:

Искомая КНФ для функции (1) будет иметь следующий вид:

В расчетах ДНФ и КНФ использована методика /2/.

Построение полинома Жегалкина.

Представление булевой функции над базисом {0,1,v,Å} называется полиномом Жегалкина.

Таким образом, всякая булева функция представима в виде:

где ∑ - сложение по модулю два, знак · обозначает конъюнкцию/7/.

Для функции f(x,y,z)(1) полином Жегалкина имеет вид:

P(x, y, z)=b0×1Åb1×xÅb2×yÅb3×zÅb4×x×yÅb5×x×zÅb6y×zÅb7x×y×z

Метод неопределенных коэффициентов заключается в том, что путем последовательной подстановки переменных x, y, z и соответственно значений функции при этих переменных, из таблицы 1 в данный полином (4), строится система уравнений:

0=b0×1Åb1×0Åb2×0Åb3×0Åb4×0×0Åb5×0×0Åb60×0Åb70×0×0

0=b0×1Åb1×0Åb2×0Åb3×1Åb4×0×0Åb5×0×1Åb60×1Åb70×0×1

1=b0×1Åb1×0Åb2×1Åb3×0Åb4×0×1Åb5×0×0Åb61×0Åb70×1×0

0=b0×1Åb1×0Åb2×1Åb3×1Åb4×0×1Åb5×0×1Åb61×1Åb70×1×1

0=b0×1Åb1×1Åb2×0Åb3×0Åb4×1×0Åb5×1×0Åb60×0Åb71×0×0

0=b0×1Åb1×1Åb2×0Åb3×1Åb4×1×0Åb5×1×1Åb60×1Åb71×0×1

0=b0×1Åb1×1Åb2×1Åb3×0Åb4×1×1Åb5×1×0Åb61×0Åb71×1×0

0=b0×1Åb1×1Åb2×1Åb3×1Åb4×1×1Åb5×1×1Åb61×1Åb71×1×1

По свойству суммы по модулю два находится b:

b0=0, b1=0, b2=1, b3=0, b4=1, b5=0, b6=1, b7=1

Полином Жегалкина будет иметь вид:

¦(x, y, z) = y Å x×y Å y×z Å x×y×z

Правильность построения полинома проверяется таблицей истинности:

Таблица 4 - Таблица истинности для полинома Жегалкина

1 2 3 4 5 6 7 8 9
x y z x&y Å y&z Å x&y&z Å
0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 1 0 0 1 0 1 0 1
0 1 1 0 1 1 0 0 0
1 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0
1 1 0 1 0 0 0 0 0
1 1 1 1 0 1 1 1 0

Дифференцирование функции нескольких переменных.

Производной булевой функции ¦(xn) по совокупности переменных  называется функция:

На основе данной формулы (5) находится производная по одной переменной x

 

Для данной функции (1) производная по формуле (6) принимает вид:

 

Таблица 5 - Производная ∂¦⁄∂x для формулы(7)

1 2 3 4 5 6 7 8 9 10 11 12 13
x y z

&

0 0 0 1 0 1 1 1 0 1 0 0 0
0 0 1 1 1 1 1 1 0 1 0 0 0
0 1 0 1 0 1 0 1 0 1 1 1 0
0 1 1 1 1 1 0 0 1 1 1 0 1
1 0 0 0 0 1 1 1 0 0 1 0 1
1 0 1 0 0 1 1 1 0 0 1 0 1
1 1 0 0 0 1 0 1 0 0 0 0 0
1 1 1 0 0 1 0 0 1 1 1 0 1

Вектор значений функции (7) имеет вид:

Производная по двум переменным находится также по формуле (5):

Для данной функции (1) производная принимает вид:

Таблица 6 - Производная ∂2¦⁄∂(x;y) для формулы(9)



1

2 3 4 5 6 7 8 9 10 11 12
x

&

0 1 1 0 1 1 1 0 1 0 0 0
0 1 0 0 1 1 1 0 1 0 0 0
0 0 1 0 1 0 1 0 1 1 1 0
0 0 0 0 1 0 0 1 1 1 0 1
1 1 1 1 1 1 1 0 0 1 0 1
1 1 0 0 1 1 1 0 0 1 0 1
1 0 1 1 1 0 1 0 0 0 0 0
1 0 0 0 1 0 0 1 1 1 0 1

Вектор значений функции (6) имеет вид:



Информация о работе «Применение методов дискретной математики в экономике»
Раздел: Математика
Количество знаков с пробелами: 34329
Количество таблиц: 6
Количество изображений: 25

Похожие работы

Скачать
38862
0
6

... и др. Они сформировались путем интеграции экспертных и формализованных методов. Схема классификации методов приведена на рис. 1 Рис. 1 - Классификация методов исследования систем управления 2. МЕТОДЫ ФОРМАЛИЗОВАННОГО ПРЕДСТАВЛЕНИЯ СИСТЕМ В ИССЛЕДОВАНИЯХ В настоящее время известны различные классификации методов формализованного представления систем. В результате этого методы, иногда ...

Скачать
51701
0
0

... . Вторая группа - методы формализованного представления систем управления, основанные на использовании математических, экономико-математических методов и моделей исследования систем управления. Среди них можно выделить следующие классы: аналитические (включают методы классической математики - интегральное исчисление, дифференциальное исчисление, методы поиска экстремумов функций, вариационное ...

Скачать
40475
24
0

... на одном этапе исследования, а иные – на другом. ЗАКЛЮЧЕНИЕ В процессе написания курсовой работы мною была изучена такая тема: «Аудит как метод исследования». Выяснила, что аудит входит в комплексно-комбинированные методы исследования систем управления, это указано на рис. 1, см. приложение 1. Комплексно-комбинированные методы исследования систем управления базируются на использовании ...

Скачать
39216
0
0

... . Это обстоятельство учитывается не только на этапе построения модели, но и на завершающей стадии, когда происходит объединение и обобщение результатов исследования, получаемых на основе многообразных средств познания. Моделирование - циклический процесс. Это означает, что за первым четырехэтапным циклом может последовать второй, третий и т.д. При этом знания об исследуемом объекте расширяются и ...

0 комментариев


Наверх