1.         Определенный контроль сходимости проводят, если методика предусматривает проведение параллельных определений.

2.         Внутренний оперативный контроль (ВОК) сходимости результатов анализа проводят при получении каждого результата предусматривающего проведение параллельных определений [5].

Пример : При определении хлоридов в питьевой воде

Х1 = 36,0 мг/л, Х2 = 37,0 мг/л,  = 36,5 мг/л.

По таблице норматив сходимости результатов параллельных испытаний для данного метода d = 1,4 мг/л. В данном случае соотношение | Х1 - Х2| ≤ d соблюдается, т.е.

| 36,0 – 37,0| ≤ 1,4

1,0мг/л < 1,4мг/л,

таким образом результат испытаний питьевой воды при определении концентрации хлоридов = 36,5мг/л являются в условиях сходимости качественными. В протокол испытаний результат испытаний вносится в следующем виде:

*+ D= 36,5мг/л + 1,4мг/л = 37,9 мг/л,

где D- абсолютная погрешность метода.

Если по таблице норматив сходимости результатов параллельных испытаний нет значения для d , то его можно рассчитать по следующей формуле :

d= .

Абсолютную погрешность метода D,т.е. ошибку метода можно рассчитать по формуле:

D = ,

где:*- относительная погрешность при P= 0,95 и n = 2 вычисляется следующим образом: .

II. В условиях воспроизводимости результатов испытаний *1 и *2 оперативный контроль воспроизводимости проводят с использованием рабочей пробы, которую делят на две части и выдают двум аналитикам или одному и тому же аналитику, но через определенный промежуток времени, в течение которого условия проведения определения остаются стабильными и соответствующими условиям проведения первого контрольного определения [23]

|*1-*2| ≤ D


где *1 и *2 – результаты испытаний, каждый из которых рассчитан по соотношению *= и получено в условиях воспроизводимости; D –норматив воспроизводимости результатов испытаний.

3. В условиях точности результатов испытаний *

0 - *|≤К,

где Х0 – значение определяемой величины (массовой концентрации) контролируемого показателя в неизвестной или «шифрованной» пробе, при исследовании в двух разных лабораториях,

К – показатель точности результатов испытаний *.

К = DМИ для случая, когда погрешность «шифрованной» пробы существенно ниже DМИ.

При проведении внутрилабораторного контроля

К = .

При проведении внешнего контроля

К=.

В лаборатории производится полный химический анализ воды на 41 ингредиент в соответствии с Сан Пин 2. 1. 4. 1074 – 01 [20].


Глава 3 Обсуждение результатов

Исследовано качество воды, предназначенной для питьевых целей, в 5 водозаборах из закрытых скважин, снабжающих водой г. Нальчик и некоторые пригородные поселки: Кенже, Белая Речка (2), Кишпек.

Работа проводилась на базе химической лаборатории Нальчикской городской санитарно-эпидемиологической станции.

Исследования проводили по 13 показателям, в том числе органолептическим: запах, цветность, вкус и привкус, мутность, а также по химическому составу: определяли жесткость и общую минерализацию, железо общее, нитраты, сероводород, фтор и йод. Эти показатели выбраны нами из 38 обязательных для мониторинга, поскольку многолетние наблюдения показали их изменчивость во времени и в некоторых случаях превышение нормативов.

Доброкачественная питьевая вода должна быть прозрачной, бесцветной, не иметь запаха и обладать приятным освежающим вкусом. Принято считать, что вода, содержащая много солей (минерализация) - не самая лучшая с позиций ее потребления. Однако и малая минерализация - ниже гигиенических нормативов, также не обеспечивает достаточного поступления в организм необходимых минеральных веществ.

Особое значение имеет присутствие в воде потенциально опасных загрязнений, например тяжелых металлов. Предварительное количественное определение таких токсикантов, как цинк, свинец, кадмий, хром, ртуть, молибден, марганец, никель, мышьяк, показало, что их содержание в исследуемых источниках ниже порога чувствительности метода.

Для определения интересующих компонентов использовали методики, соответствующие ГОСТ, приведенные в экспериментальной части.

Контроль качества питьевой воды осуществлялся в местах водозабора из источников водоснабжения перед поступлением ее в распределительную водопроводную сеть.

Отбор проб воды на Головном водозаборе проводился ежемесячно с февраля по декабрь 2004г. В пос. Белая Речка - раз в квартал, причем пробы отбирались как непосредственно из скважины, так и из верхнего резервуара насосной станции поселка. В пос. Кенже исследовали три скважины: 703, 704, 706 в апреле и мае 2005г. В сел. Кишпек исследовали разовые пробы воды 18.01.05г. в пяти скважинах (№№ 9-13).

Результаты анализа представлены в таблице3.1 и на диаграммах 1-3.

Для начала сравним качество воды в различных местах, а затем проанализируем сезонные изменения.

Головной водозабор (диаграмма 1)

В среднем в течение наблюдаемого периода по всем изученным показателям (за исключением фтора и йода) наблюдается соответствие требуемым нормативам. Однако содержание нитратов очень близко к значениям ПДК. По этому показателю данный объект лидирует среди прочих.

Пос. Кенже (таблица 3.1.)

В основном по всем показателям качество воды сходно с Головным водозабором, хотя в некоторых случаях пробы были мутными.

С. Кишпек (таблица 3.1.)

По органолептическим показателям вода этих источников аналогична водам Головного водозабора (скважина 210). Однако несколько отличается по химическому составу: несколько меньшими значениями жесткости и общей минерализации; почти в два раза меньше нитратов и фторид-ионов.

Пос. Белая Речка (диаграммы 2а-2в, 3а-3в)

Наблюдается несоответствие по 7 показателям: по всем органолептическим; высокое в сравнении с другими источниками содержание железа; особую опасность представляет присутствие сероводорода, который является чрезвычайно вредным загрязнителем и в норме не должен вообще обнаруживаться. Однако можно отметить очень низкие концентрации нитратов.

Качество питьевой воды из скважины поселка Белая Речка со свойственными ей специфическими свойствами, не отвечающими гигиеническим нормативам, связано с природно-географическими факторами.

Ниже гигиенического норматива наблюдается содержание фтора: при норме 0,7 - 1,5 мг/л наибольшая концентрация 0,29 мг/л на Головном водозаборе, а наименьшая - 0,06 мг/л на Кишпекском водозаборе. К сожалению, не обнаруживается гигиенически значимый показатель - йод.

Из диаграммы 1 видно, что в зимний и летний период жесткость, общая минерализация и концентрация фтора повышается, а в это же время концентрация нитратов уменьшается.

В весенний период наблюдается обратная картина: жесткость, общая минерализация и концентрация фтора падает, а концентрация нитратов повышается.

С конца августа по сентябрь наблюдается постепенное уменьшение концентрации определяемых показателей.

В осенний период происходит постепенное увеличение жесткости и общей минерализации и резкое увеличение концентраций нитрат и фторид-ионов NO3- и F-.

Поселок Белая Речка.

Из диаграммы 2а можно заметить, что с середины зимы до середины весны и в летний период происходит улучшение запаха, цвета и вкусовых качеств воды. А в весенний период, наоборот, происходит их ухудшение.

Из диаграммы 3а видно, что с увеличением цветности (с 22 до 70) воды с февраля по апрель происходит улучшение вкусовых качеств и запаха (с 3 до 1,5).

В летний период цветность воды остается неизменным, также происходит ухудшение вкусовых качеств воды с уменьшением запаха (с 2 до 1).

В весенний период продолжается улучшение вкусовых качеств воды (с 2,3 до 2), но появляется запах (1,5-2).

Из диаграммы 2б видно, что происходит падение мутности (с 3,6 до 0,3), содержания сероводорода (с 2 до 1,5) и концентрации железа (с 2,7 до 0,2).

В весенний период продолжается медленное падение железа (с 0,2 до 0,09), но происходит увеличение мутности (с0,3 до 4) и сероводорода (с 1,5 до 2).

В летний период происходит резкие спады мутности (с 4 до 0,55) и сероводорода (с 2 до 0,5) с медленным увеличением концентрации железа (с 0,09 до 0,3).

Из диаграммы 3б заметим, что с падением концентрации железа (с 1,4 до 0,3) и сероводорода (с 3 до 1,5) происходит увеличение мутности (с 0,48 до 2,3) на период с февраля по апрель.

Весной продолжается увеличение мутности (с 2,3 до 5), но здесь сероводород начинает повышаться (с 1,5 до 2). В этот период концентрация железа продолжает падать (с 0,3 до 0,1).

В летний период наблюдается падение мутности (с 5 до 2,6) и сероводорода (с 2 до 1) с увеличением концентрации железа (с 0,1 до 0,59).

Из диаграммы 2в видно, что с февраля происходит резкое увеличение жесткости, минерализации, постепенное увеличение концентрации нитратов, а концентрация фтора падает.

Весной происходит падение жесткости и минерализации, а в летний период повышается жесткость, а минерализация уменьшается. В этот же период происходит увеличение концентрации фтора. Концентрация нитратов увеличивается до лета, а с лета уменьшается.

Из диаграммы 3в видно, что с февраля по апрель наблюдается резкое повышение жесткости и концентрации фтора и постепенное увеличение концентрации нитратов, а в это же время наблюдается понижение общей минерализации.

В период весны происходит резкое уменьшение фтора и жесткости, а концентрация нитратов и общая минерализация повышается.

В летний период происходит резкое понижение общей минерализации и концентрации нитратов, а концентрация фтора повышается. Изменение жесткости происходит незначительно.

Из диаграммы 2а и 3а видно, что в обоих источниках за исследуемый период происходит совпадение значений запаха, а в случаях цветности и вкусовых качеств воды ни какой закономерности не наблюдается.

Из диаграмм 2б и 3б наблюдается закономерное уменьшение концентрации железа в зимне-весенний период, с последующим увеличением концентрации в летний период.

Уменьшение сероводорода происходит в зимне-летний период, с его увеличением в весенний период.

В случае общей минерализации и концентрации фтора никакой закономерности не наблюдается.

Концентрация нитратов возрастает в весенний период, с его уменьшением в летний период.

Таким образом, зависимости химического состава воды во всех скважинах от сезонных изменений не наблюдается.


Выводы

 

1.   Изучено качество воды в 5 водозаборах в г. Нальчике и пригородных поселков: Кенже, Белая Речка, Кишпек. Исследования проводились по 13 показателям: как органолептическим методом, так и измерением химического состава.

2.   Установлено, что в водозаборах: Головной, пос. Кенже и с. Кишпек в течение наблюдаемого периода почти по всем изученным показателям (за исключением фтора и йода) наблюдается соответствие требуемым нормативам.

3.   Во всех источниках ниже гигиенического норматива находится содержание фтора.

4.   Качество питьевой воды из скважины пос. Б. Речка не соответствует нормативам по 7 показателям: по всем органолептическим; высокое содержание железа, а также присутствие чрезвычайно опасного сероводорода. Это, вероятно, связано с природно-географическими факторами.

5.   Сезонные наблюдения за изменением качества воды показали: благоприятные органолептические показатели остаются постоянными в таких источниках как Головной водозабор, а также с. Кенже и Кишпек. В пос. Б.Речка эти показатели резко различаются: наилучшие наблюдаются в весенне-летний период, а в осенне-зимний - эти показатели ухудшаются.

6.   Не обнаружена зависимость химического состава воды от времени года.


Литература

1.   Самарина В.С. Гидрохимия. Л. ЛГУ, 1977. – 359 с.

2.   Алекин О.А. Основы гидрохимии. Л. Гидрометиздат. 1970.

3.   Коротков А.И. Гидрохимический анализ при региональных геологических исследованиях. Л. Недра. 1983.

4.   Исследование поверхностного и подземного стока. – Сб.ст. М.Наука. 1967.

5.   Павлов А.Н. Геологический круговорот воды на Земле. Л. Недра. 1977.

6.   Кульский Л.А., Накрочевская В.Ф. Химия воды. Киев. Выша шк.головное издательство. 1983. – 240 с.

7.   Водная И.Ф. Химия воды и микробиология. Изд-во ВШ. М. 1964.

8.   Брусиловский С.А. О миграционных формах элементов в природных водах. М.: Гидрохимия. Т.35. 1963.

9.   Валяшко М.Г. Основы геохимии природных вод. Геохимия. №11. 1967.

10.      Зайцев И.К. Гидрохимия СССР, Л.Недра. 1986. – 238 с.

11.      Перельман А.И. Геохимия природных вод М. Наука. 1982.

12.      Питьева К.Е. Гидрогеология. Формирование химического состава подземных вод. М.Изд-во МГУ. 1978.

13.      Смирнов С.И. Вероятностно-статистические закономерности распределения химических элементов в природных водах. Гидрохимические материалы. М. Недра. 1963.

14.      Воронков П.П. Формирование химического состава поверхностных вод Европейской территории СССР. – Гидрометиздат. Л. 1955.

15.      Овчинников А.И. Гидрохимия. М. Недра. 1970.

16.      Казанчев А.И. Гидрохимическая характристика высокогорных подземных вод КБАССР. Автореф. Новочеркасск. 1964.

17.      Маслов Е.П. Керефов К.Н. Экономико-географический очерк Кабардино-Балкарии. Изд. Академии Наук СССР . М. 1957.

18.      Белянкин Д.С. Природные ресурсы КБАССР. М. 1966.

19.      Лурье П.М. Водные ресурсы и водный баланс Кавказа. СПб. Гидрометиздат. 2002.

20.      Санитарно-эпидемиологичексие правила и нормативы СанПИН 2.1.4. 1074-01 «Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества.

21.      Покровский В.А. Гигиена. М. 1998.

22.      Гигиенические нормативы ГН 2.1.5.1315-03 «Предельно допустимые концентрации (ПДК) химических веществ в воде, водных объектов хозяйственно-питьевого и культурно-бытового водопользования. Утв. Постановление Правительства РФ от 24.07.2000 г №554.

23.      Государственный стандарт РФ ГОСТ 51232-98 «Вода питьевая. Общие требования к организации и методам контроля качества». М. -15 с.

24.      Протасов В.Ф. Экология, здоровье и охрана окружающей среды в России. Учебное и справочное пособие. М. 2002.

25.      Государственный стандарт РФ ГОСТ 51593-2000. Вода питьевая. Отбор проб. М. -5 с.

26.      Вода питьевая. Методы анализа .Сборник стандартов. М. 1998.

27.      Руководящий документ 52.24.450-95.

28.      Государственный стандарт Союза ССР. ГОСТ 4386-89.

29.      Методические указания МУК 4.1.1090-02.

30.      Государственный стандарт РФ ГОСТ РИСО 5725.6-2002. «Точность методов и результатов измерений. Использование значений точности на практике. М. – 42 с.


Информация о работе «Проблемы водоснабжения России»
Раздел: Экология
Количество знаков с пробелами: 134655
Количество таблиц: 8
Количество изображений: 1

Похожие работы

Скачать
157473
5
1

... управления муниципальным водоснабжением, необходимо проведение ряда мероприятий, способствующих развитию рассматриваемой сферы. 3 Пути совершенствования управления муниципальным водоснабжением   3.1 Зарубежный опыт решения проблем муниципального водоснабжения Современная система водоснабжения как составляющая часть инженерной инфраструктуры имеет огромное значение для жизни городов. ...

Скачать
25179
0
0

... источников водоснабжения, так и подземных; 3. установление условий и проведение мероприятий, при которых возможно использование водоемов для хозяйственно-питьевых целей.   4. Роль водоснабжения в состоянии здоровья населения Одной из основных задач государства является сохранение и поддержание состояния здоровья населения на уровне, соответствующем критериям цивилизованного общества. При ...

Скачать
53747
0
0

... вблизи Москвы и крупных городов области, испытывает все большие трудности. Расширять земли под пашней стало практически невозможно. Дальнейшее развитие в Подмосковье животноводства также затруднено по чисто экологическим причинам, особенно это касается свиноводческих и птицеводческих комплексов. Эти сельскохозяйственные производства относятся по уровню загрязнения окружающей среды к объектам с ...

Скачать
44873
0
0

... классическим, традиционным путем. Он представляет собой обработку реагентом (коагулянтом), двухступенчатое осветление и фильтрацию, а на Восточной станции производят и новую для России операцию - озонирование. В экстремальных экологических ситуациях используют активированный уголь. Во время длительной обработки вода обязательно дважды хлорируется. Позволить себе такую роскошь, как отсутствие ...

0 комментариев


Наверх