5. МАТЕМАТИЧЕСКИЕ ОСНОВЫ СТАТИСТИЧЕСКИХ МЕТОДОВ
5.1 Случайная величина. Общие определения
Случайная величина - это величина, измеряемая в исследуемых экспериментах, исходы которых заранее не известны и зависят от случайных причин.
Различают два вида случайных величин:
• дискретная - случайная величина, принимающая конечное или счетное множество значений х, ... , хn каждое с некоторой вероятностью pi,..., р,. Дискретная случайная величина задается законом распределения, устанавливающим однозначное соответствие между возможными значениями случайной величины и их вероятностями;
• непрерывная - случайная величина, которая может принимать все значения из некоторого конечного или бесконечного промежутка. Непрерывная случайная величина характеризуется плотностью вероятности -непрерывной функцией, такой что вероятность попадания случайной величины Х в интервал (а;Ь) равна
Пример 6.1. На контроль поступило несколько партий деталей. Контролируется размер отверстия. Диаметр отверстия - это непрерывная случайная величина, количество нестандартных деталей в каждой партии -дискретная случайная величина.
Генеральной совокупностью называется весь набор однородных объектов, изучаемых относительно некоторого качественного или количественного признака. Число всех изучаемых объектов N называется объемом генеральной совокупности.
Выборка - это та часть генеральной совокупности, элементы которой подвергаются статистическому обследованию. Число n вошедших выборку элементов называется объемом выборки.
Выборки бывают бесповторные, когда отобранный (и статистически обследованный) объект в генеральную совокупность не возвращается, и повторные, когда отобранный элемент после обследования возвращается в генеральную совокупность.
Чтобы результаты, полученные при изучении выборки, можно было достаточно уверенно распространить на всю генеральную совокупность, выборка должна быть репрезентативной (представительной). При статистическом контроле это достигается путем правильного выбора метода отбора исследуемых объектов. В зависимости от поставленных целей применяют следующие способы сбора данных:
• Простой случайный отбор, когда выбор объектов осуществляется из всей генеральной совокупности случайным образом. Этот способ применяется, например, при выборочном контроле партии деталей на соответствие некоторому стандарту.
• Типический отбор, когда объекты отбираются не из всей генеральной совокупности, а из каждой ее "типической" части. Например, если однотипные детали изготавливаются на нескольких станках, то отбор производится из продукции каждого станка в отдельности.
• Механический отбор, когда генеральную совокупность делят на столько групп, сколько объектов должно войти в выборку, и из каждой группы выбирают один объект. При этом следует внимательно следить, чтобы не нарушалась репрезентативность выборки. Например, если отбирают каждый двадцатый обтачиваемый валик, причем сразу же после замера производят замену резца, то отобраны окажутся все валики, обточенные затупленными резцами. Если исследуемый параметр зависит от остроты резца, то следует устранить совпадение ритма отбора с ритмом замены резца, например, отбирать каждый десятый валик из двадцати обточенных.
• Серийный отбор, когда объекты отбирают из генеральной совокупности не по одному, а "сериями", и обследуются все элементы каждой серии. Этот вид отбора применяют тогда, когда обследуемый признак колеблется в разных сериях незначительно, например, если изделия изготавливаются большой группой станков-автоматов, то сплошному обследованию подвергают продукцию только нескольких станков. Для получения более достоверных результатов при этом можно менять наборы "серий", то есть в разные дни обследовать разные группы станков.
При применении статистических методов управления качеством для построения контрольных карт обычно используют мгновенные выборки.
Мгновенная выборка - это выборка, взятая из технических соображений таким образом, что внутри нее вариации (то есть изменения) могут появляться только как следствие случайных (общих) причин. Возможные вариации между такими выборками, как правило, определяются неслучайными (специальными) причинами. В производстве мгновенная выборка должна быть сформирована из данных, собранных в короткий отрезок времени в однородных условиях (материал, инструмент, окружающая среда, один и тот же станок или оператор и т.п.).
При сборе данных применяют различные формы регистрации информации. Наиболее часто используют вариационные ряды, таблицы, а также контрольные листки.
Вариационный ряд - запись результатов измерений какой-либо случайной величины в виде последовательности чисел. Таким образом, получается одномерный массив чисел, обработка которого обычно начинается с его упорядочения и предполагает использование вычислительной техники. Эта форма регистрации информации наименее удобна для получения оперативных результатов и чаще всего применяется при использовании автоматических датчиков, напрямую соединенных с ЭВМ.
Таблица - представление данных в виде двумерного массива чисел, в котором элементы строки или столбца отражают состояние исследуемого признака при определенных условиях. Например, пусть некоторый параметр измеряется четыре раза в день на протяжении рабочей недели. Тогда результаты удобно занести в таблицу
День недели 9.00 11.00 14.00 16.00
понедельник
вторник
среда
четверг
пятница
Такая таблица позволяет учесть и рассчитать изменение исследуемого параметра как в течение дня - по строкам, так и в различные дни - по столбцам.
Контрольный листок - стандартный бланк, на котором заранее напечатаны контрольные параметры, чтобы можно было легко и точно записать Данные измерений. При правильно разработанном типе контрольного листа данные не только очень просто фиксируются, но и автоматически упорядочиваются для последующей обработки и необходимых выводов. Для обработки результатов статистических наблюдений их удобно оформлять в виде таблицы частот.
Статистическое распределение - таблица частот, в которой указаны значения случайной величины n, и соответствующие частоты, показывающие, сколько раз в выборке встретилось данное значение случайной величины.
Для получения интервальной таблицы частот (интервального вариационного ряда) весь диапазон измеренных значений случайной величины Х делят на k равных интервалов (а,, tt,,,) и подсчитывают количество {и} значений случайной величины, попавших на соответствующий интервал. Кроме того, в таблице указывают также величину х, - середину i'-oro интервала.
Интервальная таблица частот
Номер интервала / Интервал (а,,а,,) Середина интервала
X, Частота п,
1 (а,, а,) X1 N1
2 (а,, а,) X2 N2
k (ak.ai) Xi Nk
Здесь n1, + n2 ... + ni= n - объему выборки.
Первичная обработка результатов статистических наблюдений заключается в графическом представлении собранной информации. Обычно для этого строят гистограммы.
Для построения гистограммы на оси абсцисс отмечают границы интервалов - точки а,, ..., ai-1 . Над каждым интервалом строится прямоугольник площадью п, (очевидно, если длина каждого интервала h, то высота этого прямоугольника n/h ). Получившаяся ступенчатая фигура называется гистограммой частот. При этом площадь гистограммы частот равна объему выборки п. Отрезок [а, аn,] назовем основанием гистограммы.
Аналогично строится и гистограмма относительных частот - ступенчатая фигура, состоящая из прямоугольников, площади которых равны n/h, то есть общая площадь гистограммы относительных частот равна 1.
... в расчетной части работы в здании №1. Рассматриваемые структуры явлений служит основой изучения связи в них. Широкое использование находят в изучении населения статистические методы анализа рядов динамики, индексный, выборочный. Метод анализа рядов динамики. Процесс развития массового явления во времени принято называть динамикой, а показатели, характеризующие это развитие – статистическими ...
... и аналитической части курсовой работы для автоматизированного статистического анализа данных использовались табличный процессор MS Excel. Глава 1. Статистические методы анализа результатов деятельности коммерческих банков 1.1. Банки. Сущность деятельности банков Банковская система сегодня - одна из важнейших и неотъемлемых структур рыночной экономики. Развитие банков и товарного ...
... запасов и затрат 4151 31014 100 100 +26863 0 +647,1 +100 3. Статистические методы анализа Финансовое состояние — это совокупность показателей, отражающих наличие, размещение и использование ...
... по чистой продукции, которая определяется путем вычитания из товарной продукции материальных затрат и суммы амортизации основных фондов, что в условиях рынка соответствует понятию «валовой доход». 1.3 Статистические методы анализа динамики объема производства продукции и услуг на предприятии (фирме) В статистическом изучении динамики объема производства продукции и услуг на предприятии ...
0 комментариев