6.2 Числовые характеристики случайных величин

Поведение любой случайной величины определяется ее распределением, средним значением и разбросом относительно этого среднего значения.

Средними значениями случайной величины являются ее

• математическое ожидание - среднее арифметическое всех значений случайной величины;

• мода - значение случайной величины, которое встречается чаще всего, то есть имеет наибольшую частоту;

• медиана - такое значение случайной величины, которое оказывается точно в середине упорядоченного вариационного ряда, то есть, если все

зафиксированные значения случайной величины расположить в порядке возрастания, то слева и справа от медианы окажется одинаковое число точек. При этом, если число наблюдений нечетно (n=2k+l), то в качестве медианы берут среднюю точку хk-1,, а если число наблюдений четно (n=2k), то медиана - это центр среднего интервала (хi.хk-1,), то есть ;X=(xi+Xk+1)/2.

Разброс случайной величины относительно средних значений характеризуется дисперсией или средним квадратическим отклонением (с.к.о.) - мерой рассеяния распределения относительно математического ожидания. При этом с.к.о. - это корень квадратный из дисперсии. Наибольший разброс случайной величины определяется размахом выборки, то есть величиной интервала, в который попадают все возможные значения случайной величины.

В математической статистике говорят о статистических оценках параметров распределения. Статистические оценки бывают точечные (определяемые одним числом) и интервальные (определяемые двумя числами -концами интервала). Точечные оценки дают представление о величине соответствующего параметра, а интервальные характеризуют точность и достоверность оценки.

Предположим, что в результате наблюдений получены n значений случайной величины Х : x1; , ... , xn . Для вычисления точечных оценок параметров распределения пользуются формулами:

среднее квадратичное отклонение s = v/5 ; (6.2.8)

Пример 6.2. Пусть в результате наблюдений получены следующие значения случайной величины X: (5; 6; 3; 6; 4; 5; 3; 7; 6;7;5;6).


Упорядоченный вариационный ряд: 3, 3,4, 5, 5, 5, 6, 6, 6, 6, 7, 7.

Таблица частот статистическое распределение:

X 3 4 5 6 7

2 1 3 4 2

Вычислим все числовые характеристики случайной величины хmin = 3; xmax = 7; медиана 5- x=(X6+X7)/2 = (5 + 6)/2 = 5,5;

мода Х = 6 , так как это значение встречалось чаще всего (n = 4);

выборочное среднее х = (2 3+1 4+3 5+4 6+2 7)/12 = 5,25 ;

размах R = 7 - 3 = 4 ;

выборочная дисперсия .S= D =(1/11) (2(3 - 5,25)2+ 1(4-5,25)2+ + 3 (5 - 5.25)2 + 4 (6 - 5,25)2 +2 (7 - 5,25)2) = 15/11 = 1,84 ;

среднее квадратичное отклонением s = 1,36 .

Замечание. Современная вычислительная техника, используя специальные пакеты прикладных программ, позволяет получить значения выборочной средней и дисперсии сразу же после введения данных выборки (наблюдаемых значений исследуемой случайной величины)

6.3 Типовые теоретические распределения случайных величин

Характер поведения случайной величины определяется ее распределением. Зная тип распределения случайной величины и его числовые характеристики, можно прогнозировать, какие значения будет принимать случайная величина в результате наблюдений, то есть можно делать определенные выводы обо всей генеральной совокупности.

Наиболее часто встречается нормальное (гауссовское) распределение. Это связано с тем, что разброс характеристик качества обусловлен суммой большого числа независимых ошибок, вызванных различными факторами, а согласно центральной предельной теореме Ляпунова в этом случае случайная величина имеет распределение, близкое к нормальному.

Нормальное распределение описывает непрерывную случайную величину, поэтому его задают плотностью вероятности/С.^. Плотность вероятности нормального распределения имеет вид:

Параметр и определяет точку максимума, через которую проходит ось симметрии графика функции, и указывает среднее арифметическое значение случайной величины, s показывает разброс распределения относительно среднего значения, то есть определяет "ширину" колокола (расстояние от оси симметрии до точки перегиба графика

Для удобства подсчета вероятностей любое нормальное распределение с параметрами а и σ преобразуют к стандартному (нормированному) нормальному распределению, параметры которого а = 0, s = 1, то есть плотность

Значения функции f(х) можно найти в справочных таблицах или получить, используя готовые компьютерные программы.

Другим часто встречающимся в технике распределением непрерывной случайной величины является закон Рэлея. Он описывает распределение погрешностей формы и расположения поверхностей (биение, эксцентриситет, непараллельность, неперпендикулярность и т.п.), когда эти погрешности определяются радиусом кругового рассеяния н а плоскости.

Если на плоскости задана система координат Оху, то точка с координатами (х,у; отстоит от начала координат на расстояние координат х и у - нормально распределенная случайная величина, то г - случайная величина, имеющая распределение Рэлея. Плотность вероятности этого распределения:

Для дискретных случайных величин наиболее распространенным является биномиальное распределение. Биномиальный закон распределения описывает вероятность того, что в выборке объема п некоторый признак встретится ровно k раз. Точнее, пусть проводится п независимых испытаний ("опытов"), в каждом из которых признак может проявиться ("успех опыта") с вероятностью р. Рассмотрим случайную величину Х - число "успехов" в данной серии испытаний. Это дискретная случайная величина, принимающая значения О, 1,... , п, причем вероятность того, что Х примет значение, равное k, то есть что ровно в k испытаниях будет зафиксирован исследуемый признак, вычисляется по формуле

Формула (6.3.13) называется формулой Бернулли, а закон распределения случайной величины X, задаваемый этой формулой, называется биномиальным, Параметрами биномиального распределения являются число опытов n и вероятность "успеха" р. Но так как нас интересуют среднее значение и разброс случайной величины относительно своего среднего значения, то отметим, что для биномиального распределения математическое ожидание т → up . а дисперсия →прц .

Биномиальный закон описывает в самой общей форме осуществление признака в повторной выборке (в частности, появление несоответствий).

Например, пусть в партии из N деталей ровно М имеют внешний дефект (неравномерность окраски). При контроле из партии извлекается деталь, фиксируется наличие либо отсутствие дефекта, после чего деталь извращается обратно. Если эти действия проделаны n раз, то вероятность того, что при этом k раз будет зарегистрирован дефект, вычисляется по формуле:

Если же извлеченная деталь не возвращается обратно (или все п деталей вынимаются одновременно), то вероятность того, что среди вынутых п деталей окажется ровно k с дефектом равна

В этом случае случайная величина Х - количество несоответствующих деталей в выборке задается гипергеометрическим законом распределения. Этот закон описывает осуществление признака в бесповторной выборке.

Когда N очень велико по сравнению с п (то есть объем генеральной совокупности по крайней мере на два порядка больше объема выборки), то несущественно, какая проводится выборка - бесповторная или повторная, ТО есть в этом случае вместо формулы (6.3.16) можно использовать формулу (6.3.15).

При больших значениях п формула Бернулли (6.3.13) заменяется формулой

которая фактически совпадает с формулой (6.3.1), то есть с нормальным законом распределения, параметры которого а = пр. s = npq.

Для распределения Пуассона математическое ожидание равно l,Дисперсия также равна l.

На рисунке 6.4 представлены два биномиальных распределения P^(k). У одного п = 30; р = 0,3 - оно близко к нормальному распределению с математическим ожиданием т, = пр =-- 9. У другого п = 30;р = 0,05 - оно близко к распределению Пуассона с математическим ожиданием mk = пр = 1,5.


СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ

1. Статистические методы повышения качества (Пер. с англ./ Под ред. С. Кумэ).-М.: Финансы и статистика, 1990.-304с.

2. Статистическое управление процессами (SPC). Руководство. Пер. с англ. (с дополн.). - Н.Новгород: АО НИЦ КД, СМЦ «Приоритет», 1997г.

3. Статистический контроль качества продукции на основе принципа распределения приоритетов/В.А. Лапидус, М.И. Розно, А.В. Глазунов и др.-ВЙ.: Финансы и статистика, 1991 .-224с.

4. Миттаг Х.-И.. Ринне X. Статистические методы обеспечения качества М.: Машиностроение, 1995.-616с.

5. ГОСТ Р 50779.0-95 Статистические методы. Основные положения.

6. ГОСТ Р 50779.30-95 Статистические методы. Приемочный контроль качества. Общие требования.

7. ГОСТ Р 50779.50-95 Статистические методы. Приемочный контроль качества по количественному признаку. Общие требования.

8. ГОСТ Р 50779.51-95 Статистические методы. Непрерывный приемочный контроль качества по альтернативному признаку.

9. ГОСТ Р 50779.52-95 Статистические методы. Приемочный контроль качества по альтернативному признаку.

10. ИСО 9000-ИСО 9004. ИСО 8402. Управление качеством продукции ( пер. с англ.).-М.: Изд-во стандартов, 1988.-96с.

11. ИСО 9000. Международные стандарты.


Информация о работе «Статистические методы анализа качества»
Раздел: Экономика
Количество знаков с пробелами: 82127
Количество таблиц: 6
Количество изображений: 0

Похожие работы

Скачать
39371
1
29

... в расчетной части работы в здании №1. Рассматриваемые структуры явлений служит основой изучения связи в них. Широкое использование находят в изучении населения статистические методы анализа рядов динамики, индексный, выборочный. Метод анализа рядов динамики. Процесс развития массового явления во времени принято называть динамикой, а показатели, характеризующие это развитие – статистическими ...

Скачать
37457
21
13

... и аналитической части курсовой работы для автоматизированного статистического анализа данных использовались табличный процессор MS Excel. Глава 1. Статистические методы анализа результатов деятельности коммерческих банков 1.1. Банки. Сущность деятельности банков Банковская система сегодня - одна из важнейших и неотъемлемых структур рыночной экономики. Развитие банков и товарного ...

Скачать
96895
16
1

... запасов и затрат     4151     31014     100     100     +26863     0     +647,1     +100 3. Статистические методы анализа Финансовое состояние — это совокупность показателей, отражающих наличие, размещение и использование ...

Скачать
37963
10
11

... по чистой продукции, которая определяется путем вычитания из товарной продукции материальных затрат и суммы амортизации основных фондов, что в условиях рынка соответствует понятию «валовой доход». 1.3 Статистические методы анализа динамики объема производства продукции и услуг на предприятии (фирме) В статистическом изучении динамики объема производства продукции и услуг на предприятии ...

0 комментариев


Наверх