1. Докажите, что два треугольника, на которые диагональ делит параллелограмм, имеют равные площади.
2.Основание прямоугольника в два раза больше его высоты. Покажите на рисунке: а) как нужно разрезать этот прямоугольник на две части, чтобы из них можно было составить прямоугольный треугольник; б) как разрезать его на две части, чтобы из них можно было составить равнобедренный треугольник; в) как разрезать его на три части так, чтобы из них можно было составить квадрат. Что можно утверждать о площадях этих фигур (рис. 14, а-в)?
Урок 2
Тема урока: объем тела.
Цель урока: сформулировать основные свойства объемов.
Измерение объемов пространственных фигур должно удовлетворять свойствам, аналогичным свойствам измерения длин отрезков и площадей плоских фигур.
Учитель формирует следующие свойства.
Каждой пространственному тел ставится в соответствие величина (объем тела), причем это соответствие удовлетворяет следующим условиям:
· объем любого тела неотрицателен;
· конгруэнтные тела имеют равные объемы;
· если тело М есть объединение тел М1 и М2, пересечение которых либо содержит только точки или линии поверхностей обоих тел, либо пусто, то объем тела М равен сумме объемов тел М1 и М2;
· объем куба, длина ребра которого равна 1, равен единице.
Упражнения для закрепления свойств объемов пространственных фигур:
1. Прямоугольный параллелепипед ABCDA1B1C1D1, объем которого 18 см3, разделен сечением KLMN на два конгруэнтных тела (рис. 15). Найдите объем каждой части.
2. Из кубов, длины ребер которых равны 1 см, составлена фигура, изображенная на рис. 16. Вычислите ее объем.
|
4. Прямоугольный параллелепипед ABCDA1B1C1D1 разделен плоскостью АСС1А на две треугольные призмы, объем одной из которых равен 8 см3. Найдите объем параллелепипеда.
|
|
Урок 3
Тема урока: интегральная формула для вычисления объема фигуры.
Цель урока: показать построение подынтегральной функции и способ вычисления объемов фигур с помощью интеграла.
В начале урока в ходе решения ряда упражнений следует напомнить учащимся способ вычисления площадей плоских фигур с помощью интеграла: , где f(x) – функция, задающая криволинейную трапецию.
После этого следует сообщить учащимся, что для вычисления объемов пространственных фигур существует аналогичный способ, к изучению которого мы и переходим.
Пусть дана пространственная фигура Ф. Выберем плоскость таким образом, чтобы она не пересекала Ф (рис. 17).
Выберем прямую Ох, перпендикулярную плоскости . Зададим на этой прямой координаты: за начало координат возьмем О – точку пересечения прямой Ох с плоскостью . Положительное направление выбрано в том полупространстве, в котором расположена фигура Ф. Через точку с координатой х на этой прямой проведем плоскость (х), параллельную плоскости . Таким образом можно установить соответствие между плоскостями, параллельными плоскости , и множеством действительных чисел.
Среди плоскостей данного множества есть такие, которые пересекают фигуру Ф. Первая из этих плоскостей имеет координату а, а последняя – b. Таким образом, фигура Ф заключена между плоскостями (a) и (b), другими словами, задана на отрезке [a,b]. Конечно, далеко не всегда фигура задана на отрезке. Она может быть задана на интервале, на дискретном множестве и т. п. Но в курсе геометрии средней школы можно ограничиться рассмотрением фигур, заданных на отрезке.
Упражнения:
1. Дан куб ABCDA1B1C1D1, длина ребра которого равна 3. В качестве плоскости выбрана плоскость ABCD, а в качестве Ох – прямая АА1. Найдите значения a и b и укажите плоскости (a) и (b).
2. Дана пирамида ABCD. В качестве плоскости выбрана плоскость BCD, а в качестве оси Ох – высота АМ пирамиды. Найдите значения a и b и укажите плоскости (a) и (b), если АМ=6.
3. Дан шар радиуса 8 см с центром в точке К. В качестве плоскости выбрана плоскость на расстоянии 10 см от центра шара. Задайте ось Ох, найдите значения a и b и укажите плоскости (a) и (b).
4. Постройте функцию S(x) для шара радиуса 8 см, если плоскость (х) проходит через центр шара.
5. Постройте функцию S(x) для конуса с высотой Н и радиусом основания R, если в качестве плоскости выбрана плоскость, параллельная основанию и проходящая через вершину конуса.
После решения этих упражнений формулируется следующее определение: объемом фигуры Ф называется интеграл от a до b функции S(x): .
Упражнения:
6. Запишите интегральную формулу для вычисления объемов фигур, заданных в упр. 4, 5.
7. Запишите формулу для вычисления объема цилиндра высоты Н и радиуса R, если в качестве плоскости выбрана плоскость основания цилиндра.
8. Запишите формулу для вычисления объема прямоугольного параллелепипеда с измерениями m, p, n (плоскость задайте сами).
Урок 4
Тема урока: интегральная формула для вычисления объема фигуры.
Цель урока: закрепить изученное на предыдущем уроке и провести доказательство обоснованности данного определения объема.
Упражнения:
... подобраны опорные задачи, которые можно использовать на уроке при изучении данной темы. Таким образом, в данной работе были рассмотрены основные, общие моменты изучения многогранников в школьном курсе стереометрии. В следствие чего дальнейшие исследования могут проходить в направлении более детального изучения отдельных разделов данной темы, а также пропедевтического введения многогранников в ...
... . Позитивизма. Для позитивистов верным и испытанным является только то, что получено с помощью количественных методов. Признают наукой лишь математику и естествознание, а обществознание относят к области мифологии. Неопозитивизм, Слабость педагогики неопозитивисты усматривают в том, что в ней доминируют бесполезные идеи и абстракции, а не реальные факты. Яркий ...
... итог сказанному выше, можно утвердительно сказать о том, что поступление названных учебников «Моя математика» в школы даст возможность учителям начального звена обучения более системно и продуктивней осуществлять развитие пространственных представлений младших школьников. Заключение Из курсов педагогики и методики математики известно, что деятельность может быть репродуктивной и продуктивной. ...
... не разработана. В следующей главе мы выявим особенности и методики применения основных идей квантового обучения в обучении математике. Глава 2. Особенности применения квантового обучения при обучении математике 2.1. Реализация основных идей квантового обучения в преподавании математики Рассмотрим реализацию основных идей квантового обучения в преподавании математике в соответствии с разбиением ...
0 комментариев