1. Строим параллелограмм ОАСВ: АМ II ОВ, ВН II ОА.

2. а = ОА = ВС,

 в = ОВ = АС, т.к. параллелограмм.

3. ОА + АС = ОВ + ВС = ОС, значит а + в = в + а. ч.т.д.

Для доказательства ассоциативности мы отложим от произвольной точки О вектор ОА = а, от точки А вектор АВ = в и от точки в – вектор ВС = с. Тогда мы имеем: АВ + ВС =АС.

(а + в ) + с = (ОА + АВ) + ВС = ОВ + ВС = ОС,

а + (в + с ) = ОА + (АВ + ВС) = ОА + АС = ОС,

откуда и следует равенство


а + ( в + с ) = (а + в) + с.

Заметим, что приведенное доказательство совсем не использует чертежа. Это характерно (при некотором навыке) для решения задач при помощи векторов.

Остановимся теперь на случае, когда векторы а и в направлены в противоположные стороны и имеют равные длины; такие векторы называют противоположными. Наше правило сложения векторов приводит к тому, что сумма двух противоположных векторов представляет собой «вектор», имеющий нулевую длину и не имеющий никакого направления; этот «вектор» изображается «отрезком нулевой длины», т.е. точкой. Но это тоже вектор, который называется нулевым и обозначается символом 0.

Равенство векторов.

Два вектора называются равными, если они совмещаются параллельным переносом. Это означает, что существует параллельный перенос, который переводит начало и конец одного вектора соответственно в начало и конец другого вектора.

Из данного определения равенства векторов следует, что разные векторы одинаково направлены и равны по абсолютной величине.

И обратно: если векторы одинаково направлены и равны по абсолютной величине, то они равны.

Действительно, пусть векторы АВ и СD – одинаково направленные векторы, равные по абсолютной величине (рис.6). Параллельный перенос, переводящий точку С в точку А, совмещает полупрямую СD с полупрямой АВ, так как они одинаково направлены. А так как отрезки АВ и CD равны, то при этом точка D совмещается с точкой В, то есть параллельный перенос переводит вектор CD в вектор АВ. Значит, векторы АВ и СD равны, что и требовалось доказать.

Скалярное произведение двух векторов и его свойства.

Скалярным произведением двух нулевых векторов называется число, равное произведению числовых значений длин этих векторов на косинус угла между векторами.

Обозначение:

а х в = IaI * IbI * cos ( а, в).

Свойства скалярного произведения:


Информация о работе «Формирование пространственного мышления при изучении векторного пространства у учащихся основной школы»
Раздел: Педагогика
Количество знаков с пробелами: 83137
Количество таблиц: 3
Количество изображений: 3

Похожие работы

Скачать
82430
1
7

... Остальные понятия, такие как сонаправленность полупрямых и равенство фигур, рекомендуется изучать классическим способом. Т.к. благодаря мультимедийному пособию ученикам уже известны основные свойства движений и они с помощью учителя без особых усилий смогут применить накопленные знания при изучении данных тем. Например, в теме «сонаправленность полупрямых» основным элементом является параллельный ...

Скачать
41919
0
0

... движение. Глава 3. развитие понятия функции в школьном курсе физике. §3.1. Функция как важнейшее звено межпредметных связей. В общей системе теоретических знаний учащихся по физике и математике в средней школе большое место занимает понятие «функция». Оно имеет познавательное и мировоззренческое значение и играет важную роль в реализации межпредметных связей [13]. Функция является одним ...

Скачать
147329
8
14

... учебник и задачник / А. П. Кисилев, Н.А. Рыбкин. – М.: Дрофа, 1995. 9.   Изучение личности школьника / под. ред. Л.И. Белозеровой. – Киров, Информационный центр, 1991. 10.             Коновалова, В.С. Решение задач на построение в курсе геометрии как средство развития логического мышления / В.С. Коновалова, З.В. Шилова // Познание процессов обучения физике: сборник статей. Вып.9. – Киров: Изд-во ...

Скачать
249522
15
58

... развитие логического мышления учащихся является одной из основных целей курса геометрии. При изучении геометрии развитие логического мышления учащихся осуществляется в процессе формирования понятий, доказательства теорем, решения задач. При изучении геометрических построений, прежде всего, приходится преодолевать трудности логического порядка. В условиях школы для преодоления этих трудностей ...

0 комментариев


Наверх