2.1 Методические аспекты развития пространственного мышления как элемента образного

Рассмотрим, какие подходы предлагают для развития пространственного мышления в средней школе и выясним возможности их использования.

А. Пардала выделяет такие основные типы упражнений, дидактическим назначением которых является формирование и развитие пространственных представлений учащихся: математические игры, связанные с пространственными представлениями; исследование конкретных геометрических объектов-фигур и преобразований; конструктивные задачи; прикладные задачи; проекционные стереометрические задачи; задачи на проектирование геометрических тел, построение сечений; диагностические задачи на проверку сформированности пространственных представлений.

Однако А. Я. Цукарь считает, что хотя это не классификация, тем не менее так смешивать (как это сделал А. Пардала) в одном перечне типы упражнений, одни из которых являются частным случаем других, а у некоторых совершенно разные основания, непозволительно. Очевидно, что выделять в отдельный тип диагностические задачи не имеет смысла. В математических играх могут использоваться самые разные задачи: и на проектирование, и на построение сечений. А разве задачи на проектирование геометрических тел не являются конструктивными? Налицо частая для методических публикаций нечётность в делении, как логической операции, иногда доходящая до эклектики.

Г. Н. Никитина говорит о методических приёмах развития пространственного мышления учащихся: привлечение неплоских пространственных образов при рассмотрении вопросов планиметрии; создание целостного геометрического образа с опорой на наглядность; создание ситуаций, способствующих активному оперированию геометрическим образом; творческое конструирование новых геометрических образов. В другой работе Г. Н. Никитина с авторам к показателям развития пространственного мышления относит умения: 1. создавать исходный геометрический образ, т. е. в графической модели передавать форму, размеры и взаимное расположение отдельных элементов объекта; 2. выбирать и произвольно изменять точку отсчёта; 3. сохранять в памяти геометрический образ; 4. анализировать и синтезировать геометрические образы; 5. рассматривать объект с разных точек зрения; 6. мысленно производить различные геометрические преобразования над исходным геометрическим образом; 7. мысленно изменять структуру геометрического образа; 8. осуществлять глазомерные оценки линейных и угловых величин. В приведённых выше делениях также имеется смешение разных оснований.

На каком-то этапе специалисты, образно говоря, занимаются "собирательством", чтобы затем более внимательно изучить и систематизировать накопленный материал. В последнее время появилось понимание того, что не только 5-6 классы среднего звена, а также и начальная школа, - благоприятное время для развития пространственного мышления. Поэтому хоть и медленно, но на уроке математики в начальных классах проникают специальные упражнения, направленные на его развитие. Затем в 6-9 классах эта проблема забывается и всплывает (по необходимости) в 10 классе, поскольку явно даёт о себе знать. Традиционно для развития пространственного воображения учеников 10-11 классов использовались задачи на построение сечений многогранников плоскостью. Эта тема находилась в центре внимания многих исследователей, начиная с Н. Ф. Четвертухина. Ей посвятил свою небольшую книгу К. С. Богушевский, которая помогла учителям увидеть место таких задач при изучении аксиом стереометрии и тем " Параллельность прямых и плоскостей ". Методистами разрабатывались системы задач, связанных с изображением пространственных фигур и с построением сечений многогранников плоскостью.

Основой формирования пространственного воображения является практическая работа ребёнка с пространственными объектами, манипулирование ими, изменение их положения в пространстве разъединение и соединение нескольких в один. Внешние действия субъекта с объектами являются необходимыми для того, чтобы он мог затем производить с ними внутренние, мысленные действия. Но они не являются достаточными. Любая деятельность воображения невозможна без фиксации её промежуточных этапов (конструкций) каким-либо простым способом (в знаково-символической форме). Поэтому для развития пространственного воображения школьников нужно вооружать их соответствующими знаниями о способах такой фиксации. Одним из самых распространенных является изображение пространственных объектов по принятым правилам. Необходимое условие формирования и развития пространственного воображения - наличие достаточно обширного и разнообразного материала для восприятия. Правильность, продуктивность его возрастает под влиянием упражнений, учитывающих всю гамму возможных операций над пространственными объектами, приводящих к созданию новых образов, ведь основная его функция - оперирование пространственными образами. Таким образом, явно выделяются два типа упражнений, лежащих в основе формирования и развития пространственного мышления : упражнения на умение читать изображения и изображать пространственные объекты, и упражнение на оперирование пространственными образами. В свою очередь, в них можно выделить разные виды: отыскание изображения из нескольких данных для предъявленного объекта; нахождение объекта из некоторого набора, соответствующего данному изображению; завершение изображения известного объекта по его фрагменту; идентификация различных изображений одного и того же пространственного объекта; узнавание фигуры по её проекциям; 6. определение взаимного расположения нескольких фигур по их изображениям; 7. оценивание формы и размеров фигуры; 8. построение проекций заданной фигуры; 9. построения изображения объекта по его 10. изображение объекта по его описанию; 11. изготовление модели по её чертежу, по предъявленному объекту, по его описанию; 12. узнавание и изображение объекта, полученного (мысленным) изменением ( с помощью поворота, симметрии, параллельного переноса) положения заданного; 13. узнавание и изображение фигуры, составленной из заданных по известному правилу; 14. изображение пересечения заданных фигур (в том числе после мысленного их перемещения); 15 изображение частей фигур после её мысленного расчленения.

Требования к содержанию (упражнениям) обучения, направленного на достижение необходимого уровня пространственного мышления (по Нурмагомедову). Упражнения должны строиться с расчётом: - использования конкретных представлений о материальных телах , их взаимном расположении в пространстве, об их свойствах (подвижность, неподвижность, устойчивость, неустойчивость, способность сохранения и изменения формы и т. п. ); учёта необходимости доминанты качественной оценки окружающих предметов над количественной, свойственной учащихся основной школы. Отсюда, например метрические представления не должны опережать представления о форме или взаимном расположении; обеспечения необходимой и обязательной работы по развитию речи, формированию активного словаря, характеризующего форму предметов и фигур, их свойств, отношения взаимного расположения в пространстве; - обеспечения использования при выполнении заданий и упражнений всех возможных рецепторов восприятия окружающего пространства (зрения, осязания, слуха). Отсюда необходимость обеспечения при решении упражнений разнообразных видов деятельности и способов решений.



Информация о работе «Формирование пространственного мышления при изучении векторного пространства у учащихся основной школы»
Раздел: Педагогика
Количество знаков с пробелами: 83137
Количество таблиц: 3
Количество изображений: 3

Похожие работы

Скачать
82430
1
7

... Остальные понятия, такие как сонаправленность полупрямых и равенство фигур, рекомендуется изучать классическим способом. Т.к. благодаря мультимедийному пособию ученикам уже известны основные свойства движений и они с помощью учителя без особых усилий смогут применить накопленные знания при изучении данных тем. Например, в теме «сонаправленность полупрямых» основным элементом является параллельный ...

Скачать
41919
0
0

... движение. Глава 3. развитие понятия функции в школьном курсе физике. §3.1. Функция как важнейшее звено межпредметных связей. В общей системе теоретических знаний учащихся по физике и математике в средней школе большое место занимает понятие «функция». Оно имеет познавательное и мировоззренческое значение и играет важную роль в реализации межпредметных связей [13]. Функция является одним ...

Скачать
147329
8
14

... учебник и задачник / А. П. Кисилев, Н.А. Рыбкин. – М.: Дрофа, 1995. 9.   Изучение личности школьника / под. ред. Л.И. Белозеровой. – Киров, Информационный центр, 1991. 10.             Коновалова, В.С. Решение задач на построение в курсе геометрии как средство развития логического мышления / В.С. Коновалова, З.В. Шилова // Познание процессов обучения физике: сборник статей. Вып.9. – Киров: Изд-во ...

Скачать
249522
15
58

... развитие логического мышления учащихся является одной из основных целей курса геометрии. При изучении геометрии развитие логического мышления учащихся осуществляется в процессе формирования понятий, доказательства теорем, решения задач. При изучении геометрических построений, прежде всего, приходится преодолевать трудности логического порядка. В условиях школы для преодоления этих трудностей ...

0 комментариев


Наверх