План
Вступ
1. Науково-методичні основи проблеми
1.1 Розвиток просторових уявлень молодших школярів
1.2 Наукові основи вивчення геометричного матеріалу у початкових класах
1.3 Функції геометричних понять
2. Методика вивчення геометричного матеріалу у початкових класах
2.1 Ознайомлення з геометричними фігурами та задачами на їх розпізнавання
Висновок
Література
Вступ
Математика в початковій школі – це одна з найважливіших дисциплін. Вона розвиває уяву, спостережливість, образне й логічне мислення, яке є основою творчості, складовою частиною інтуїції, без якої не обходиться жодне наукове відкриття. Саме на уроках математики формуються особисті якості дитини: зібраність, організованість, здатність швидко та якісно приймати рішення, доводити й відстоювати свою думку.
Сьогодні важливе значення приділяється оновленню змісту освіти на засадах особистісної орієнтації, що передбачає, насамперед, всебічне врахування потреб дитини, її схильностей та інтересів, розробку змісту навчання й різних способів навчання [1, 3].
Успішне навчання в старших класах, особливо з геометрії, значною мірою залежить від розвитку просторової уяви, яка, на думку психологів, піддається активному формуванню саме в молодшому шкільному віці. Математика серед шкільних предметів з’явилася настільки давно, наскільки давно з’явилася сама система шкільного навчання. У різні історичні періоди ставлення до предмета було різним, але за будь-яких умов шкільна математика визнавалася прогресивно мислячою спільнотою одним з найважливіших загальноосвітніх предметів.
Методика навчання математики належить до педагогічних наук. Педагогіка вивчає загальні закономірності процесу виховання, навчання та освіти дітей.
Методика викладання математики – педагогічна наука про мету, зміст, методи, форми і засоби передачі учням математичних знань, про виховання в процесі навчання.
Початкова школа – перша ланка середньої загальноосвітньої школи. Вимоги, що стоять перед школою в цілому, визначають основні напрямки роботи її початкової ланки, а отже, і навчальний план. Математика – один з обов'язкових предметів початкових класів. І це не випадково. Визнання математики обов'язковим навчальним предметом загальноосвітньої школи безпосередньо пов'язане з її роллю в науково-практичній діяльності людства. «Красунею» називали математику стародавні індуси, а стародавні греки проголосили її «гімнастикою розуму».
Актуальність дослідження. У математиці розглядаються різні геометричні об’єкти: пряма, крива, кут, коло, многокутники та інші. Усе це математичні поняття. Щоб правильно організувати процес формування того чи іншого поняття у школярів треба, насамперед чітко визначити його місце у науці і його зміст у шкільному курсі, пам’ятаючи про те, що друге не повинне суперечити першому.
Поняття – це одна з основних форм мислення, в якій відображається суть предметів і явищ реального світу в їх істотних, необхідних ознаках і відношеннях.
Отже, можна сказати, що поняття – це цілісна сукупність суджень про який-небудь об’єкт, ядром якої є судження, що відображають істотні ознаки об’єкта.
Об’єкт дослідження – вивчення геометричного матеріалу на уроках математики у початкових класах.
Предмет дослідження – методична система (цілі, зміст, обсяг, методи, види, засоби, структура) формування математичних понять.
Мета дослідження – узагальнити і систематизувати теоретико-методичні положення і розробити деякі власні методичні рекомендації по вивченню даної теми.
Гіпотеза дослідження – розроблена методика формування геометричних понять у процесі викладання математики в початковій школі на основі освітнього стандарту з математики сприятиме підвищенню якості загальноосвітньої, математичної, професійної підготовки учнів, розвиває інтуїцію, деякі навички мислення, тобто сприяє підвищенню їх інтелектуального рівня.
Відповідно до мети і гіпотези дослідження було визначено такі завдання роботи:
· аналіз психолого-педагогічної, методичної, математичної літератури з проблеми дослідження;
· розкрити загальні питання формування математичних понять;
· виявити психолого-дидактичні передумови застосування понять;
· виявити психологічні закономірності процесу формування геометричних понять в учнів основної школи.
Практичне значення результатів дослідження:
— розроблені методичні рекомендації по формуванню математичних понять;
— вивчення методики вибору ефективних шляхів, методів та прийомів формування математичних понять.
Джерелом дослідження є наукові статті з журналів, методичні посібники та підручники з математики.
1. Науково-методичні основи проблеми
У програмі традиційної початкової школи геометричний матеріал є складовою частиною курсу математики. Він не виділяється в самостійний розділ, а включається в програму кожного року навчання. Але, на жаль, вивчається геометричний матеріал в основному на рівні початкового вивчення.
Розвиток сприйняття вимагає введення геометричного матеріалу, тому що сам геометричний матеріал – це образи, це символи. Отже, друга складова – це мова. Дані образи й символи є моделлю реальних об'єктів. Реальні об'єкти можуть бути створені в ході моделюючої діяльності. Ці моделі представлені поняттями (сторона, кут, трикутник, многокутник), які природно діти намагаються вивчити якомога найкраще. А засобом опису моделей є мова. Тому на уроках спочатку вводимо моделі (геометричні образи).
Третій компонент, розвиток уяви, закладається в безпосередній діяльності конструювання. Однак мова й у цьому випадку є засобом розвитку учнів. При цьому творча фантазія дітей нічим не обмежена, зміст геометричної уяви діти формулюють опираючись на науковий понятійний апарат і логічні прийоми сприймання мислення.
Навчальна діяльність для дітей молодшого шкільного віку є провідною, а моделювання за допомогою знакової й символічної діяльності, є однію зі складових навчальної діяльності в сукупності з іншими інтелектуальними вміннями. Моделююча, знаково-символічна діяльність – це ті види діяльності, за допомогою яких учні розбудовують пам'ять, увагу, творчу уяву.
Виклад геометричного матеріалу проводиться в наочно-практичному плані. Працюючи з геометричним матеріалом, діти знайомляться й використовують основні властивості досліджуваних геометричних фігур. Завдання розташовуються в порядку ускладнення й поступового збагачення новими елементами конструкторського характеру.
При первісному уведенні основних геометричних понять (точка, лінія, площина) використовуються нестандартні способи: створення наочного образа за допомогою малюнка на відомому дітям матеріалі, казкового сюжету з використанням казкових персонажів, виконання нескладних спочатку практичних робіт.
Після введення однієї з найважливіших лінійних геометричних фігур – відрізка – передбачена серія завдань на конструювання з відрізків однакової й різної довжини. Перші завдання спрямовані на виявлення рівних і нерівних відрізків, на вміння розташувати їх у порядку збільшення або зменшення. Далі відрізки використовуються для виготовлення силуетів різних об'єктів на площині.
Програмою передбачено ознайомити із плоскими фігурами: трикутником, прямокутником, квадратом; з геометричними тілами: кубом, циліндром, кулею і їхніми елементами; розгортками геометричних тіл; із площиною; з колом і кругом, умінням виконувати креслення за допомогою циркуля; одержують виставу про центр, радіус, діаметр кола (круга), а також про півколо й кільце. Діти вчаться вирішувати завдання на знаходження периметра, площі й обсягу фігур; знайомляться й вчаться працювати з основними інструментами: лінійка, косинець, циркуль і ін. [5, 38]
Передбачається знайомство з конструкціями із шашок і кубиків, виконання креслення конструкцій, три їх виду: попереду, зверху, ліворуч. Діти вчаться писати графічні диктанти по клітинках і по координатних шкалах. У програмі враховуються вікові особливості дітей і матеріал представляється у формі цікавих завдань, казкових подорожей, дидактичних ігор, ігрових ситуацій, використовуються вірші, казки, лічилки, загадки, ребуси і т.д.
В одній із своїх статей А.М. Колмогоров писав, що програма з математики і, навіть, вищої математики побудована так, що вона розрахована на «середнього» учня. Отже, для того, щоб добитись запланованих результатів навчання треба постійно здійснювати контроль за якістю і вести облік знань учнів на уроках математики.
В методичній літературі постійно обговорювалось питання: як допомогти учню знайти шлях до розв’язування задачі. Єдиний правильний шлях – це достатні знання з теорії плюс присутність відповідної практики. Якщо учні роблять помилки – це добре. Це – симптом нерозуміння. Але лічити треба не симптоми, а хворобу.
... культури учнів початкових класів, поглибити розуміння дітьми взаємозв’язків у природі, взаємозалежності між її об’єктами та явищами. Однією з педагогічних умов ефективного формування екологічної культури молодших школярів є цілеспрямоване та системне планування уроків, виховних заходів з використанням екологічно спрямованого матеріалу, зв’язок його з життям, що забезпечує підпорядкованість всієї ...
... . 2.2 Формування наукового світогляду молодших школярів в процесі застосування засобів художньо-творчої діяльності в навчально-виховному процесі Метою формуючого експерименту ми визначили формування світогляду молодших школярів засобами художньо-творчої діяльності. Формуючий експеримент здійснювався протягом 5 тижнів з використанням системи різноманітних засобів (див. додаток Б, В, Г, Є, ...
... порівняно з контрольним значно підвищився рівень розвитку графічних умінь. Це свідчить про ефективність застосовуваного напрямку роботи. 2.3 Обґрунтування ефективних шляхів і засобів формування графічних умінь у молодших школярів на уроках трудового навчання Перед сучасною школою стоїть складне і відповідальне завдання — формування особистості, здатної самостійно оволодівати знаннями і вміти ...
... галицького побутового костюма на спеціалізованих уроках образотворчого мистецтва у 3 класі (див. додатки Б-В). Вирішальним для учнів початкових класів в плані формування художньо-конструктивного мислення молодших школярів засобами галицького побутового костюма були зміст і якість проведення уроків образотворчого мистецтва. В результаті впровадження в систему занять з образотворчого мистецтва ...
0 комментариев