1.2 Наукові основи вивчення геометричного матеріалу у початкових класах

 

Вивчення геометричних фігур і тіл супроводжується безпосередніми маніпуляціями з моделями, їх побудовою, конструюванням, спирається на приклади з навколишнього середовища і максимально враховує життєвий досвід учнів.

Учні знайомляться з величинами (довжина і площа), їх вимірюванням і відношенням (взаємне розміщення, паралельності, перпендикулярності).

Основна мета вивчення геометрії в початкових класах ввести на наочно-інтуїтивному рівні поняття про основні фігури на площині і простіші геометричні тіла, їх побудову і вимірювання, розширити уявлення учнів, здобуті в попередніх класах, про істотні ознаки геометричних фігур, уміння обчислювати геометричні величини (довжини, площі, об’єми деяких фігур) за формулами. Геометричні поняття, операції і відношення дістають математичне спрямування.

Усі курси геометрії – рівневодиференційовані. Це досягається запровадженням таких рівнів вивчення геометрії, а, значить, сформованості геометричних умінь:

1 рівень (мінімально базовий). Матеріал засвоюється в обсязі обов’язкових результатів навчання, які необхідні учням для подальшого вивчення геометрії в основній і здобуття, в майбутньому, робітничих професій.

2 рівень (базовий). Передбачає засвоєння знань і вироблення вмінь в обсязі, заданому програмами з геометрії.

3 рівень (підвищений). Учні, що вчаться на цьому рівні, дістають більш глибокі знання і вміння, ніж це передбачено програмами.

Зміст навчання визначається шкільними програмами та підручниками.

Нормативним, обов’язковим для виконання документом, який визначає основний зміст шкільного курсу математики, обсяг знань, що мають бути засвоєні учнями кожного класу, та умінь і навичок, які мають набути учні, є навчальна програма з математики.

Навчальна програма з математики грунтується на принципах відповідності програми основним завданням школи, забезпечує наступність, яку одержують учні в 1–4 класах, 5–9 класах, 10–11 класах.

Програма 1–4 класів з математики містить матеріалів, необхідний для формування знань та умінь, котрі є базою для подальшого навчання школярів.

Програма початкової школи передбачає, що всі теоретичні знання набуваються і оброблюються дітьми в безпосередньому зв’язку з розв’язанням задач та з виробленням у дітей осмислених твердих навичок письмових обчислень з багатоцифровими числами.

Різнорівнева диференціація досягається модульним принципом побудови курсів, який забезпечує підвищений рівень навчання. Кожний курс включає дві частини – інваріантну і варіативну. Варіативна частина містить логічно завершені порції матеріалу, які доповнюють інваріантну частину.

1.3 Функції геометричних понять

 

Поняття – це форма мислення, в якій відображається суть предметів і явищ реального світу в їх істотних, необхідних ознаках і відношеннях.

Ознакою називають все те, в чому об'єкти споріднені один до одного, або в чому вони різняться. Істотними називають такі ознаки поняття, кожна з яких є необхідна, а всі разом достатні для того, щоб даний об'єкт відрізнити від інших, подібних йому, щоб пізнати його суть.

Думка про предмет, в якій відображаються загальні і істотні його ознаки, називається поняттям. Поняття, яке означується, називають означуваним, а те поняття чи групу понять, за допомогою яких вводиться означуване поняття, називають означуючи ми поняттями.

Кожне поняття має зміст і обсяг. Зміст поняття – це сукупність істотних ознак, що входять у дане поняття. Обсяг або об'єм поняття – це множина предметів, що охоплюється даним поняттям.

Зміст поняття визначає обсяг. Між змістом поняття і обсягом існує обернена залежність.

Якщо обсяг одного поняття А міститься в обсязі іншого поняття В (А є В), то друге поняття називають родовим по відношенню до першого поняття, а перше називають видовим по відношенню до другого.

Наприклад: арифметичні дії – додавання, віднімання, множення, ділення. Родове поняття – арифметичні дії. Видові поняття – додавання, віднімання, множення, ділення.

В родовидових відношеннях слід розрізняти найближчий рід і наступні родові ступені. Якщо між залежними поняттями не можна поставити іще одне поняття, то матимемо відношення найближчого роду і виду.

Означення поняття – це логічна операція, за допомогою якої розкривається зміст поняття. Результатом такої операції є речення, яке також називають означенням. Означенням називають речення, в якому в стислій формі за допомогою вже відомих понять і їх властивостей розкривається зміст нового поняття.

Словесне позначення поняття називається терміном. В математиці для окремих термінів існують символи.

Є різні способи означування понять. Основний із них – через найближчий рід і видову відмінність. Цей спосіб полягає в тому, що називаються, по-перше, найближчий рід, до якого належить означуване поняття, і, по-друге, особлива ознака (або кілька таких ознак) даного поняття, що характеризує його як один з видів зазначеного роду. Означення через найближчий рід і видові ознаки мають таку конкретизацію: означення шляхом вказівки на їх характеристичну властивість; заперечне означення, включаючи неявні означення основних (початкових) об'єктів (фігур) предмета через систему аксіом; конструктивні і рекурсивні означення.

Означення математичних об'єктів шляхом опису характеристичної властивості. Цей вид означення побудований на логічних діях і операціях установлення найближчого роду, видових ознак і логічної природи зв'язку між родом і видовими ознаками.

В залежності від логічної природи зв'язку означення в прикладах: перше кон'юнктивне, друге – диз'юнктивне, третє – записане у вигляді імплікацій.

Конструктивні означення. Властивості об'єкта в такому означенні розкриваються шляхом показу операцій його конструювання, тобто видові ознаки задані у вигляді дій.

В рекурсивних означеннях вказуються деякі базисні об'єкти певного класу і правила, які дозволяють одержати нові об'єкти цього ж класу.

Заперечні означення не задають властивостей об'єкта (перелічуються властивості, які заперечуються). Вони ніби викопують класифікаційну функцію.

Аксіоматичне означення – це логічна операція опосередкованого розкриття змісту поняття за допомогою певної аксіоматики.

Означення через абстракцію. При цьому, порівнюючи між собою різні предмети, виділяють їх спільні властивості, а серед них – специфічні властивості для даної групи предметів. Сукупність встановлених при цьому ознак об'єднуються загальною назвою, не зазначаючи родового поняття (яке зовсім не існує або до моменту означення новою поняття ще не створене).

Наприклад, поняття «величина».

Правила означування.

1) Означення повинно бути співвимірним, тобто обсяг означуваного і означуючого понять мають бути рівними.

2) Означення не повинно містити ще не означених понять (якщо вони не є первісними).

3) Родова ознака має вказувати на найближче ширше поняття.

4) Видовою відмінністю повинна бути ознака або група істотних ознак, властивим тільки даному предмету і відсутніх в інших предметах, які належать до цього самого роду.

5) Означення має бути чітким і однозначним.

Класифікація поняття – це логічна операція, за допомогою якої обсяг поняття ділять за якою-небудь ознакою на класи, а останні (вже за іншими ознаками) – на підкласи і т.д. Найпростіший вид класифікації – поділ, при цьому) обсягу даного поняття ділять за якоюсь однією ознакою на два або більше класів. Поняття, обсяг якого становить одиничний предмет, поділити не можна. Ознака, за якою здійснюють поділ, називається основою поділу.

В методиці викладання математики виділяються два методи введення понять: конкретно-індуктивний і абстрактно-дедуктивний. Ці методи визначаються логічними методами пізнання – індукцією і дедукцією. Схема застосування конкретно-індуктивного методу така: аналізується емпіричний матеріал (при цьому, крім індукції і дедукції, застосовуються й інші логічні методи: аналіз, порівняння, абстрагування, узагальнення); виясняються спільні ознаки поняття, які його характеризують; формулюється означення; означення закріплюється шляхом наведення прикладів і контрприкладів; подальше засвоєння поняття і його означення відбувається в процесі їх застосування. [6, 77]

Схема застосування абстрактно-дедуктивного методу така: формулюється означення поняття; наводяться приклади і контрприклади; подальше засвоєння поняття і означення відбувається в процесі їх застосування.

Широко застосовується в шкільному навчанні і частково в підручниках з математичних дисциплін метод доцільних задач, розроблений С.М. Шохор-Троцьким. За допомогою спеціально підібраних задач учні приходять до висновку про необхідність введення нового поняття і доцільність надання йому саме такого змісту, який воно вже має в математиці.

Учитель, вводячи нове поняття, ставить мету, щоб учні засвоїли істотні ознаки, які входять в його зміст. Але ця мета не досягається повністю в умовах використання стандартних креслень. Стандартні креслення наштовхують учнів на сприйняття окремих ознак фігур як істотних ознак. Звідси і поширені помилки типу: трикутник прямокутний, якщо прямий кут внизу, зовнішній кут завжди тупий. Використання лише стандартних геометричних креслень є неповноцінним використанням геометричної наочності, і за цих умов пояснення вчителя і геометрична наочність діють в різних напрямках, внаслідок чого пояснення в значній мірі втрачає свою керівну і організуючу силу. При цьому немає необхідності давати надто багато варіацій. Важливо лише, щоб серед фігур, які демонструються, було дві-три фігури, форма і положення яких нестандартні.

Кожне поняття треба правильно зрозуміти, свідомо і чітко засвоїти всім учням ще на уроці. Ця мета має досягатися в процесі введення поняття, але необхідно, щоб поняття закріплялося на даному і повторювалася на наступних уроках. Кожен учень повинен знати означення понять, які вивчаються, засвоєнню складних в структурному відношенні означень допомагає аналіз логічної структури означень.

Аналіз означення допомагає більш свідомому його сприйняттю, запам'ятовуванню і відтворенню. Виясненню структури означень сприяють вправи на побудову схем алгоритмів розпізнавання понять. Оперативному введенню понять сприяє застосування технічних засобів навчання, різноманітних засобів наочності. З метою навчання і контролю під час вивчення означень застосовуються математичні диктанти і тести.

В шкільній навчально-методичній літературі треба дотримуватись єдиного порядку у формулюванні означень: спочатку дається означуване поняття, потім предикат, далі – найближчі родові поняття і нарешті – видові ознаки.

Процес формування геометричних понять не закінчуєтеся їх початковим введенням. Він продовжується під час використання цих понять для означення інших понять, формулювання теорем, проведення доведень, розв'язання задач.

 



Информация о работе «Формування геометричних понять у молодших школярів»
Раздел: Педагогика
Количество знаков с пробелами: 59323
Количество таблиц: 2
Количество изображений: 1

Похожие работы

Скачать
93477
3
2

... культури учнів початкових класів, поглибити розуміння дітьми взаємозв’язків у природі, взаємозалежності між її об’єктами та явищами. Однією з педагогічних умов ефективного формування екологічної культури молодших школярів є цілеспрямоване та системне планування уроків, виховних заходів з використанням екологічно спрямованого матеріалу, зв’язок його з життям, що забезпечує підпорядкованість всієї ...

Скачать
120541
8
5

... .   2.2 Формування наукового світогляду молодших школярів в процесі застосування засобів художньо-творчої діяльності в навчально-виховному процесі Метою формуючого експерименту ми визначили формування світогляду молодших школярів засобами художньо-творчої діяльності. Формуючий експеримент здійснювався протягом 5 тижнів з використанням системи різноманітних засобів (див. додаток Б, В, Г, Є, ...

Скачать
92444
1
8

... порівняно з контрольним значно підвищився рівень розвитку графічних умінь. Це свідчить про ефективність застосовуваного напрямку роботи. 2.3 Обґрунтування ефективних шляхів і засобів формування графічних умінь у молодших школярів на уроках трудового навчання Перед сучасною школою стоїть складне і відповідальне завдання — формування особистості, здатної самостійно оволодівати знаннями і вміти ...

Скачать
153128
0
13

... галицького побутового костюма на спеціалізованих уроках образотворчого мистецтва у 3 класі (див. додатки Б-В). Вирішальним для учнів початкових класів в плані формування художньо-конструктивного мислення молодших школярів засобами галицького побутового костюма були зміст і якість проведення уроків образотворчого мистецтва. В результаті впровадження в систему занять з образотворчого мистецтва ...

0 комментариев


Наверх