1.5 Звенья преобразования веществ в биологическом круговороте
Рассмотрим звенья преобразования веществ в последовательности, предложенной Смольяниновым (1969) с некоторыми изменениями. Так звено потребления, выделяемое им как заключительное, мы рассмотрим первым, так как представляется более логичным рассматривать его в первую очередь, так как оно состоит из автотрофов.
1. Звено потребления. В нём происходит биосинтез органического вещества. Энергия Солнца улавливается пигментами растений и преобразуется в энергию химических связей. Таким образом, в круговорот вовлекаются кислород, углерод и водород. Остальные же элементы поступают из почвы для различных целей регуляции физиологических процессов растения и случайным путем.
Растения в звене потребления формируют транспортные потоки веществ, зачастую превосходящих другие формы передвижения вещества в почвенном профиле. Так Фокин (2007) приводит следующие аргументы в пользу признания ведущей роли живого растения в формировании транспортных потоков различных веществ в некоторых почвах:
- для подавляющего большинства макро- и микроэлементов масштабы их ежегодного вовлечения в биологический круговорот приблизительно на порядок превосходят масштабы современного абиотического выноса;
- абсолютные скорости перемещения веществ в проводящих системах растений (единицы сантиметров в час и более) в большинстве случаев на много порядков превосходят зафиксированные скорости абиотических потоков в почвах (диффузия, конвективные перенос и др.);
- линейные размеры, по вертикали занимаемые живым растением, включая корневые системы, существенно могут превосходить мощность почвенного профиля, что создает условия для пространственного развития последнего;
- повышенные коэффициенты использования растениями большинства элементов из состава отмерших растительных остатков по сравнению с другими формами, локализованными в минеральной части почвы.
После прохождения блока анаболизма вещество проходит блок некроболизма и поступает в блок катаболизма, открывающийся следующим звеном.
2. Звено первичного разрушения органики. Разложение лесного опада начинается, как правило, с его измельчения под влиянием мезо- и микрофауны почв. Из измельчающихся остатков происходит вымывание наиболее легко растворимых соединений.
3. Звено ферментативного распада органических соединений. В этом звене органическое вещество подвергается мощному действию ферментов, выделяемых микрофлорой почвы и корневыми системами растений. Действие ферментов происходило и во втором звене, однако до тез пор, пока органические остатки надлежащим образом не измельчатся, все реакции, включая и ферментативные, протекают слабее.
4. Звено реакций промежуточного разложения и синтеза. В этом звене химический элемент участвует в превращениях бесчисленного класса соединений и их осколков промежуточного характера – между бывшими устойчивыми соединениями органических остатков, подвергшихся в предыдущем звене биохимическому и химическому разложению, и собственно гумусовыми веществами.
5. Звено гумификации и последующей минерализации. Собственно гумусовые вещества почвы, образовавшиеся как по типу превращений веществ ароматического строения, так и по типу меланоидинов, возникают в почве посредством реакций конденсации и полимеризации многочисленных осколков молекул органических веществ и их соединений с минеральными веществами, которые отражали великое разнообразие процессов в предыдущем звене биокруговорота. Гумусовые вещества могут происходить как в результате гетерополиконденсации низкомолекулярных веществ, так и окислительного кислотообразования ВМС, типа лигнина.
6. Звено обменного и необменного поглощения почвой. При минерализации гумусовых веществ освобожденный химический элемент может не сразу попасть в корень растения. По законам физико-химической поглотительной способности почв он входит в обменную зону коллоидной частицы, либо необменно поглощается твердой фазой почвы.
7. Звено ризосферных превращений элемента в биокруговороте. В этом звене элемент участвует в сложных процессах, совершаемых на разделе: почва-корень. Под ризосферой понимается прикорневой слой почвы, равный
2. Показатели и классификации биологического круговорота
2. 1 Основные показатели биологического круговорота
Общая система описания биологического круговорота включает в себя ряд последовательных направлений, соответствующих происходящим процессам. Несомненно, процессам придается исключительное значение, особенно на первоначальном, описательном этапе исследования круговорота. В рамках круговорота описание процессов касается разных уровней организации биосферы. Предложено выделять обменные процессы в биогеоценозах суши, а также общие этапы трансформации, которые включают в себя ряд последовательных и взаимосвязанных процессов от синтеза органического вещества растительностью - до этапа минерализации органического вещества почвы. Вторая группа описания круговорота состоит из численных показателей, фактически количественно отражающих проявления различных процессов. В самом общем виде в системе показателей используются четыре равноценных подгруппы. Первая из них отражает все особенности продукционно-деструкционных процессов. Вторая подгруппа – включает в себя химический состав отдельных компонентов биогеоценоза. Третья подгруппа показателей объединяет использование энергетических характеристик в биологическом круговороте. Четвертая подгруппа – это показатели, отражающие время круговорота (Богатырев, 2005).
Основные показатели биологического круговорота подразделяются на три группы. Первая группа объединяет те из них, которые характеризуют продуктивность наземных экосистем. Эти показатели относятся к числу фундаментальных и только на их основании можно составить представление не только о структуре и функционировании наземных экосистем, но и о направленности биологического круговорота. Продуктивность – это способность живых организмов создавать, трансформировать и консервировать органическое вещество. Установлено, что значительная часть солнечной энергии расходуется на транспирацию, и только от 0,8-1,0% - на фотосинтез (табл. 2)
Таблица 2 –
Показатели продуктивности некоторых зональных растительных сообществ
Показатель | Пятнистые дриадово-моховые тундры (Таймыр) | Ельники Валдая (80 лет) | Луговая степь (Тамбовская низменность) |
Фитомасса, г/м2 сухого вещества | 1958 | 36400 | 2530 |
Продуктивность, г/м2 в сутки | 0,4 | 4,6 | 2,9 |
Опад, г/м2 | 9 | 612 | 1060 |
Подстилки; опад зеленой массы | 13 | 6 | 1 |
Надземная фитомасса; подземная фитомасса | 0,12 | 4,0 | 0,17 |
Фотосинтезирующая масса; нефотосинтезирующая масса | 0,04 | 0,02 | 0,15 |
Фотосинтезирующая часть прироста; нефотосин-тезирующая часть прироста | 0,17 | 0,30 | 0,45 |
Вторая группа показателей, которые широко используются при характеристике биологического круговорота - это данные о химическом составе живых организмов. При изучении биологического круговорота существенное значение уделяется таким важнейшим макроэлементам как кальций, магний, кремний и ряд других. Особенно важное значение принадлежит азоту.
Третья группа показателей круговорота может быть основана на энергетических величинах. Расчеты показывают, что во всей биомассе суши заключено около 4 х 1016 МДж. Максимальные величины сосредоточены в экваториальных и североамериканских лесах из секвойи и пихты Дугласа, где эти величины, соответственно, составляют от 800 до 1700 МДж/м. В таежных лесах эти показатели снижаются до 500 МДж/м, а в широколиственных лесах возрастают до 650 МДж/м. Обращает на себя внимание, что эти величины вполне сопоставимы с тем количеством, которое аккумулируется в гумусе почв. В частности, в типичных черноземах сосредоточено около 1000 МДж/м, значительно больше сосредоточено потенциальной энергии в торфах (Васильевская, Богатырев, 2003).
... опять круговорот она может лишь в результате геологических процессов или путем извлечения живым веществом. Однако извлечь нужные живым организмам вещества из земной коры гораздо сложнее, чем из атмосферы. Интенсивность биологического круговорота в первую очередь определяется температурой окружающей среды и количеством воды. Так, например, биологический круговорот интенсивнее протекает во ...
... , являющихся защитными и выполняющих водоохранные, почвозащитные и другие полезные функции. В первую очередь резерваты были отведены на территории Катон-Карагайского государственного национального природного парка ЛГР №12-17. Ведение хозяйства в лесных генетических резерватах осуществляется в соответствии с Типовыми положениями, Лесным кодексом Республики Казахстан и другими нормативными актами. ...
... будет описываться гомеостатическим плато (рис. 6) – областью отрицательных связей, а при нарушении системы начинают преобладать обратные положительные связи, что может привести к гибели системы. Применительно к лесному фитоценозу гомеостаз характеризуется относительно постоянным числом эдификаторов и упрочением связей между всеми ярусами и видами, входящими в биогеоценоз, вселение «чужаков» в ...
... этой подстилки и условиях ее перегнивания. Положительная ролькак источника непосредственного питания и как мертвого покрова, защищающего почву от испарения влаги. 3. Функции и роль подстилки в экосистеме 3.1 Экологическая роль лесных подстилок в миграции техногенных загрязнителей Исследования миграции радиоактивных веществ показали, что после их поступления на поверхность лесной подстилки ...
0 комментариев