4.2.1. Представление пространства решений стандартной задачи ЛП.
Модель:
максимизировать целевую функцию
при ограничениях
На – пространство решений. Каждую точку можно определить с помощью
Для идентификации нужной точки воспользуемся тем, что при ограничения модели эквивалентны равенствам, которые представляются соответствующими рёбрами пространства решений.
Анализируя , заметим, что
можно упорядочить, исходя из того, какое значение (нулевое или ненулевое) имеет данная переменная в экстремальной точке.
Экстр. | переменные | |
точка | нулевые | ненулевые |
A | ||
B | ||
C | ||
D | ||
E | ||
F |
Из таблицы выделим закономерности:
1. Стандартная модель содержит четыре уравнения и шесть неизвестных, поэтому в каждой из экстремальных точек (6–4) переменные должны иметь нулевые значения.
2. Смежные экстремальные точки отличаются только одной переменной в каждой группе (нулевых и ненулевых переменных).
Если линейная модель стандартной формы содержит уравнений и неизвестных, то все допустимые экстремальные точки определяются как все однозначные неотрицательные решения системы уравнений, в которых m-n переменных равны нулю. Однозначные решения такой системы – базисные решения. Если они удовлетворяют требованию неотрицательности правых частей, то это – допустимое базисное решение. Переменные, равные нулю – небазисные, остальные – базисные. Каждую следующую экстремальную точку можно определить определить путём замены одной из текущих небазисных переменных текущей базисной переменной. В нашем примере при переходе из т. A в т. B необходимо увеличивать небазисную переменную от исходного нулевого значения до значения, соответствующего т. B. В т. B s2 обращается в нуль (становится небазисной). Т.о., происходит взаимообмен xE и s2 между небазисными и базисными переменными.
Включаемая переменная – небазисная в данный момент переменная, которая будет включена в множество базисных переменных на следующей итерации. Исключаемая переменная – базисная в данный момент переменная, которая на следующей итерации подлежит исключению из множества базисных переменных.
4.2.2 Вычислительные процедуры симплекс-метода
Симплекс-алгоритм:
Шаг 0: Используя линейную модель стандартной формы, определяют НДБР путём приравнивания к нулю n-m (небазисных) переменных.
Шаг 1: Из числа текущих небазисных переменных выбирается включаемая в новый базис переменная, увеличение которой обеспечивает улучшение значения целевой функции. Если её нет -- текущее базисное решение оптимально, иначе переход к Шагу 2.
Шаг 2: Из числа переменных текущего базиса выбирается исключаемая переменная, которая должна стать небазисной при введении в состав базиса новой переменной.
Шаг 3: Находится новое базисное решение, соответствующее новым составам базисных и небазисных переменных. Переход к Шагу 1.
Если xE=xI=0, то
(соответствует точке A Ha ) – начальное допустимое решение.
Решение | ||||||||
-3 | -2 | |||||||
2 | 6 | |||||||
2 | 8 | |||||||
-1 | ||||||||
2 |
Если в задаче максимизации все небазисные переменные в -уравнении имеют неотрицательные коэффициенты, полученное пробное решение является оптимальным. Иначе в качестве новой базисной переменной следует выбрать ту, которая имеет наибольший по абсолютной величине отрицательный коэффициент. Применяя это условие к исходной таблице – переменная, включаемая в базис.
Процедура выбора подключаемой переменной предполагает проверку условия допустимости, требующего, чтобы в качестве исключаемой переменной выбиралась та (из текущего базиса), которая первой обращается в нуль при увеличении включаемой переменной вплоть до значения, соответствующего смежной экстремальной точке.
Отношение, идентифицирующее исключаемую переменную, можно определить из симплекс-таблице. Для этого в столбце вводимой переменной вычёркиваются отрицательные и нулевые элементы ограничений. Затем вычисляются отношения постоянных из правых частей ограничений к оставшимся элементам столбца. Исключаемая переменная – та, для которой это отношение минимально.
Решение | Отношение | ||||||||
-3 | -2 | - | |||||||
2 | 6 | ||||||||
2 | 8 | ||||||||
-1 | - | ||||||||
2 | - |
Столбец, ассоциированный с вводимой переменной – ведущий столбец; строка, соответствующая исключаемой переменной – ведущая строка; на их пересечении – ведущий элемент.
Поиск нового базисного решения осуществляется методом исключения переменных (метод Жордана-Гаусса). Этот процесс включает в себя вычислительные процедуры двух типов.
Тип 1. Формирование ведущего уравнения
Новая ведущая строка = предыдущая ведущая строка/ведущий элемент
Тип 2. Формирование остальных уравнений
Новое уравнение = предыдущее уравнение – (коэффициент ведущего столбца предыдущего уравнения)*(новая ведущая строка)
Новая симплекс-таблица, полученная после проведения рассмотренных операций:
Решение | Отношение | ||||||||
- | |||||||||
- | |||||||||
- | |||||||||
- | |||||||||
- | |||||||||
- |
xI – вводимая переменная (т.к. коэффициент в -уравнении -1/2). Исключаемая переменная s1, (отношение 4/3 – минимальное). Снова проведём вычисления двух типов. Последняя симплекс-таблица соответствует оптимальному решению задачи, т.к. в -уравнении ни одна из небазисных переменных не фигурирует с отрицательными коэффициентами.
В случае минимизации целевой функции в этом алгоритме необходимо изменить только условие оптимальности: в качестве новой базисной переменной следует выбирать переменную, которая в -уравнении имеет наибольший положительный коэффициент. Условия допустимости в обоих случаях одинаковы.
... . При этом значения cij соответствуют коэффициентам целевой функции исходной замкнутой транспортной задачи (1) и в последующем не изменяются. Элементы xij соответствуют значениям переменных промежуточных решений транспортной задачи линейного программирования и изменяются на каждой итерации алгоритма. Если в некоторой ячейке xij=0, то такая ячейка называется свободной, если же xij>0, то такая ...
... среди математиков, его разделяли А.Н.Колмогоров, И.М.Гельфанд, В.И.Арнольд, С.П.Новиков и др. Нельзя не восхищаться естественностью и внутренней стройностью математической работ Л.В. по двойственности линейного программирования и их экономической интерпретацией. 2. О математической экономике как области математики и о некоторых ее связях А) Связи линейного программирования с функциональным и ...
... решения останется неизменным, т.е. будет состоять из переменных (Х3,Х6,Х4,Х5). СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ 1. Смородинский С.С., Батин Н.В. Методы и алгоритмы для решения оптимизационных задач линейного программирования. Ч.1. – Мн.: БГУИР, 1995. 2. Смородинский С.С., Батин Н.В. Методы и алгоритмы для решения оптимизационных задач линейного ...
... области (если допустимая область ограничена и не пуста); 3. ограниченность целевой функции в допустимой области является необходимым и достаточным условием разрешимости задачи. Гл 2 Решение задач линейного программирования графическим способом на ЭВМ 2.1 Описание работы программы Программа написана с использованием собственных функций и процедур и трех стандартных модулей System, Crt и ...
0 комментариев