1. Біти початкового повідомлення x піддаються початковій підстановці IP відповідно до табл. 1.1.
Таблиця 1.1
Підстановка IP
58 | 50 | 42 | 34 | 26 | 18 | 10 | 2 | 60 | 52 | 44 | 36 | 28 | 20 | 12 | 4 |
62 | 54 | 46 | 38 | 30 | 22 | 14 | 6 | 64 | 56 | 48 | 40 | 32 | 24 | 16 | 8 |
57 | 49 | 41 | 33 | 25 | 17 | 9 | 1 | 59 | 51 | 43 | 35 | 27 | 19 | 11 | 3 |
61 | 53 | 45 | 37 | 29 | 21 | 13 | 5 | 63 | 55 | 47 | 39 | 31 | 23 | 15 | 7 |
Це означає, що 58-й біт стає першими, 50-й - другим і т.д. Потім одержаний вектор x0 = IP(x) представляється у вигляді x0 =L0R0, де L0 – ліва половина з 32 бітів, а R0 – права половина з 32 бітів.
2. Повідомлення L0R0 перетворюється далі 16 разів по так званій схемі Фейстеля:
Li =Ri-1, Ri = Li-1 Å ¦( Ri-1, Ki), i = 1, 2, …, 16,
де функція ¦ і розклад ключів K1, K2, …, K16 будуть описані окремо.
Мал. 1.2 Криптоперетворення Фейстеля
4. Повідомлення L16R16 перемішується підстановкою IP-1:
y = IP-1(L16R16),
де у – зашифроване повідомлення.
Таблиця 1.2
Підстановка IP-1
40 | 8 | 48 | 16 | 56 | 24 | 64 | 32 | 39 | 7 | 47 | 15 | 55 | 23 | 63 | 31 |
38 | 6 | 46 | 14 | 54 | 22 | 62 | 30 | 37 | 5 | 45 | 13 | 53 | 21 | 61 | 29 |
36 | 4 | 44 | 12 | 52 | 20 | 60 | 28 | 35 | 3 | 43 | 11 | 51 | 19 | 59 | 27 |
34 | 2 | 42 | 10 | 50 | 18 | 58 | 26 | 33 | 1 | 41 | 9 | 49 | 17 | 57 | 25 |
Шифрування здійснюється по схемі, приведеній на мал. 1.3.
………………………
Мал. 1.3 Схема криптопeретворення DES
Функція ¦. Вона має два аргументи: А і В. Перший складається з 32 бітів, а другий - з 48 бітів. Результат складається з 32 бітів.
1. Аргумент А, що має 32 біта, перетворюється в 48-бітовий вектор Р(А) шляхом перестановки з повтореннями початкового вектора А. Ця процедура однакова для всіх тактів. Вона задана табл. 1.3.
Таблиця 1.3
Підстановка Р1
32 | 1 | 2 | 3 | 4 | 5 | 4 | 5 | 6 | 7 | 8 | 9 | 8 | 9 | 10 | 11 |
12 | 13 | 12 | 13 | 14 | 15 | 16 | 17 | 16 | 17 | 18 | 19 | 20 | 21 | 20 | 21 |
22 | 23 | 24 | 25 | 24 | 25 | 26 | 27 | 28 | 29 | 28 | 29 | 30 | 31 | 30 | 1 |
2.Далі обчислюється сума Р(А)Å В і записується у вигляді конкатенації восьми 6-бітових слів: Р(А)Å В = B1B2 B3 B4 B5 B6 B7 B8.
3. На цьому етапі кожне слово Bі поступає на відповідний S-блок Sі. Блок Sі перетворює 6-бітовий вхід Bі в 4-бітовий вихід Ci. S-блок є 4´16 матриця з цілими елементами в діапазоні від 0 до 16.
Два перших біта слова Bі, якщо їх розглядати як двійковий запис числа, визначають номер рядка матриці S-блоку. Чотири останні біти визначають деякий стовпець. Тим самим знайдений деякий елемент матриці. Його двійковий запис і є виходом.
Таблиця 1.4
Блок S1
14 | 4 | 13 | 1 | 2 | 15 | 11 | 8 | 3 | 10 | 6 | 12 | 5 | 9 | 0 | 7 |
0 | 15 | 7 | 4 | 14 | 2 | 13 | 1 | 10 | 6 | 12 | 11 | 9 | 5 | 3 | 8 |
4 | 1 | 14 | 8 | 13 | 6 | 2 | 11 | 15 | 12 | 9 | 7 | 3 | 10 | 5 | 0 |
15 | 12 | 8 | 2 | 4 | 9 | 1 | 7 | 5 | 11 | 3 | 14 | 10 | 0 | 6 | 13 |
Таблиця 1.5
Блок S2
13 | 1 | 8 | 14 | 6 | 11 | 3 | 4 | 9 | 7 | 2 | 13 | 12 | 0 | 5 | 10 |
Продовження табл. 1.5
3 | 13 | 4 | 7 | 15 | 2 | 8 | 14 | 12 | 0 | 1 | 10 | 6 | 9 | 11 | 5 |
0 | 14 | 7 | 11 | 10 | 4 | 13 | 1 | 5 | 8 | 12 | 6 | 9 | 3 | 2 | 15 |
13 | 8 | 10 | 1 | 3 | 15 | 4 | 2 | 11 | 6 | 7 | 12 | 0 | 5 | 14 | 9 |
Таблиця 1.6
Блок S3
10 | 0 | 9 | 14 | 6 | 3 | 15 | 5 | 1 | 13 | 12 | 7 | 11 | 4 | 2 | 8 |
13 | 7 | 0 | 9 | 3 | 4 | 6 | 10 | 2 | 8 | 5 | 14 | 12 | 11 | 15 | 1 |
13 | 6 | 4 | 9 | 8 | 15 | 3 | 0 | 11 | 1 | 2 | 12 | 5 | 10 | 14 | 7 |
1 | 10 | 13 | 0 | 6 | 9 | 8 | 7 | 4 | 15 | 14 | 3 | 11 | 5 | 2 | 12 |
Таблиця 1.7
Блок S4
7 | 13 | 14 | 3 | 0 | 6 | 9 | 10 | 1 | 2 | 8 | 5 | 11 | 12 | 4 | 15 |
13 | 8 | 11 | 5 | 6 | 15 | 0 | 3 | 4 | 7 | 2 | 12 | 1 | 10 | 14 | 9 |
10 | 6 | 9 | 0 | 12 | 11 | 7 | 13 | 15 | 1 | 3 | 14 | 5 | 2 | 8 | 4 |
3 | 15 | 0 | 6 | 10 | 1 | 13 | 8 | 9 | 4 | 5 | 11 | 12 | 7 | 2 | 14 |
Таблиця 1.8
Блок S5
2 | 12 | 4 | 1 | 7 | 10 | 11 | 6 | 8 | 5 | 3 | 15 | 13 | 0 | 14 | 9 |
14 | 11 | 2 | 12 | 4 | 7 | 13 | 1 | 5 | 0 | 15 | 10 | 3 | 9 | 8 | 6 |
4 | 2 | 1 | 11 | 10 | 13 | 7 | 8 | 15 | 9 | 12 | 5 | 6 | 3 | 0 | 14 |
11 | 8 | 12 | 7 | 1 | 14 | 2 | 13 | 6 | 15 | 0 | 9 | 10 | 4 | 5 | 3 |
Таблиця 1.9
Блок S6
12 | 1 | 10 | 15 | 9 | 2 | 6 | 8 | 0 | 13 | 3 | 4 | 14 | 7 | 5 | 11 |
10 | 15 | 4 | 2 | 7 | 12 | 9 | 5 | 6 | 1 | 13 | 14 | 0 | 11 | 3 | 8 |
9 | 14 | 15 | 5 | 2 | 8 | 12 | 3 | 7 | 0 | 4 | 10 | 1 | 13 | 11 | 6 |
4 | 3 | 2 | 12 | 9 | 5 | 15 | 10 | 11 | 14 | 1 | 7 | 6 | 0 | 8 | 13 |
Таблиця 1.10
Блок S7
4 | 11 | 2 | 14 | 15 | 0 | 8 | 13 | 3 | 12 | 9 | 7 | 5 | 10 | 6 | 1 |
13 | 0 | 11 | 7 | 4 | 9 | 1 | 10 | 14 | 3 | 5 | 12 | 2 | 15 | 8 | 6 |
1 | 4 | 11 | 13 | 12 | 3 | 7 | 14 | 10 | 15 | 6 | 8 | 0 | 5 | 9 | 2 |
6 | 11 | 13 | 8 | 1 | 4 | 10 | 7 | 9 | 5 | 0 | 15 | 14 | 2 | 3 | 12 |
Таблиця 1.11
Блок S8
13 | 2 | 8 | 4 | 6 | 15 | 11 | 1 | 10 | 9 | 3 | 14 | 5 | 0 | 12 | 7 |
1 | 15 | 13 | 8 | 10 | 3 | 7 | 4 | 12 | 5 | 6 | 11 | 0 | 14 | 9 | 2 |
7 | 11 | 4 | 1 | 9 | 12 | 14 | 2 | 0 | 6 | 10 | 13 | 15 | 3 | 5 | 8 |
2 | 1 | 14 | 7 | 4 | 10 | 8 | 13 | 15 | 12 | 9 | 0 | 3 | 5 | 6 | 11 |
4. Вихід С = С1 С2 … С8 перемішується фіксованою підстановкою Р2.
Таблиця 1.12
Підстановка Р2.
16 | 7 | 20 | 21 | 29 | 12 | 28 | 17 | 1 | 15 | 23 | 26 | 5 | 18 | 31 | 10 |
2 | 8 | 24 | 14 | 32 | 27 | 3 | 9 | 19 | 13 | 30 | 6 | 22 | 11 | 4 | 25 |
Розклад ключів.
... захисту необхідно виявити можливі погрози безпеці інформації, оцінити їх наслідки, визначити необхідні заходи і засоби захисту і оцінити їх ефективність. [25] 1.3 Криптографічні методи захисту інформації Криптографічний захист інформації — вид захисту інформації, що реалізується за допомогою перетворень інформації з використанням спеціальних даних (ключових даних) з метою приховування (або ...
... В АБС АКБ «ПРОМІНВЕСТБАНК» ТА ОЦІНКА РІВНЯ ВРАЗЛИВОСТІ БАНКІВСЬКОЇ ІНФОРМАЦІЇ 3.1 Постановка алгоритму задачі формування та опис елементів матриці контролю комплексної системи захисту інформації (КСЗІ) інформаційних об’єктів комерційного банку В дипломному дослідженні матриця контролю стану побудови та експлуатації комплексної системи захисту інформації в комерційному банку представлена у вигляді ...
... передбаченою. 3. Генерація гамми не повинна бути дуже трудомісткою. Слід зазначити, що алгоритми криптосистем з відкритим ключем (СВК) можна використовувати за трьома напрямками: 1. Як самостійні засоби захисту даних, що передаються чи зберігаються. 2. Як засіб для розподілу ключів. Алгоритми СВК більш трудомісткі, ніж традиційні криптосистеми. Обмін великими інформаційними потоками здійснюють ...
... ональних інтересів та безпеку інформаційного простору. Підсумки: В цьому розділі ми з’ясували, які саме зміни всередині урядових організацій, в їх структурі, функціях і методах роботи ініціює запровадження електронного уряду. А саме: відбувається перенесення акцентів з вертикальних на горизонтальні зв’язки всередині уряду, між різними його підрозділами і гілками влади. За рахунок створення внутрі ...
0 комментариев