Біти початкового повідомлення x піддаються початковій підстановці IP відповідно до табл. 1.1

142838
знаков
20
таблиц
5
изображений

1. Біти початкового повідомлення x піддаються початковій підстановці IP відповідно до табл. 1.1.

Таблиця 1.1

Підстановка IP

 

58 50 42 34 26 18 10 2 60 52 44 36 28 20 12 4
62 54 46 38 30 22 14 6 64 56 48 40 32 24 16 8
57 49 41 33 25 17 9 1 59 51 43 35 27 19 11 3
61 53 45 37 29 21 13 5 63 55 47 39 31 23 15 7

 

Це означає, що 58-й біт стає першими, 50-й - другим і т.д. Потім одержаний вектор x0 = IP(x) представляється у вигляді x0 =L0R0, де L0 – ліва половина з 32 бітів, а R0 – права половина з 32 бітів.

2. Повідомлення L0R0 перетворюється далі 16 разів по так званій схемі Фейстеля:

Li =Ri-1, Ri = Li-1 Å ¦( Ri-1, Ki), i = 1, 2, …, 16,

де функція ¦ і розклад ключів K1, K2, …, K16 будуть описані окремо.

 

Мал. 1.2 Криптоперетворення Фейстеля

 

4. Повідомлення L16R16 перемішується підстановкою IP-1:

 y = IP-1(L16R16),

де у – зашифроване повідомлення.

Таблиця 1.2

Підстановка IP-1

 

40 8 48 16 56 24 64 32 39 7 47 15 55 23 63 31
38 6 46 14 54 22 62 30 37 5 45 13 53 21 61 29
36 4 44 12 52 20 60 28 35 3 43 11 51 19 59 27
34 2 42 10 50 18 58 26 33 1 41 9 49 17 57 25

Шифрування здійснюється по схемі, приведеній на мал. 1.3.


………………………

Мал. 1.3 Схема криптопeретворення DES

Функція ¦. Вона має два аргументи: А і В. Перший складається з 32 бітів, а другий - з 48 бітів. Результат складається з 32 бітів.

1. Аргумент А, що має 32 біта, перетворюється в 48-бітовий вектор Р(А) шляхом перестановки з повтореннями початкового вектора А. Ця процедура однакова для всіх тактів. Вона задана табл. 1.3.

Таблиця 1.3

Підстановка Р1

 

32 1 2 3 4 5 4 5 6 7 8 9 8 9 10 11
12 13 12 13 14 15 16 17 16 17 18 19 20 21 20 21
22 23 24 25 24 25 26 27 28 29 28 29 30 31 30 1

2.Далі обчислюється сума Р(А)Å В і записується у вигляді конкатенації восьми 6-бітових слів: Р(А)Å В = B1B2 B3 B4 B5 B6 B7 B8.

3. На цьому етапі кожне слово Bі поступає на відповідний S-блок Sі. Блок Sі перетворює 6-бітовий вхід Bі в 4-бітовий вихід Ci. S-блок є 4´16 матриця з цілими елементами в діапазоні від 0 до 16.

Два перших біта слова Bі, якщо їх розглядати як двійковий запис числа, визначають номер рядка матриці S-блоку. Чотири останні біти визначають деякий стовпець. Тим самим знайдений деякий елемент матриці. Його двійковий запис і є виходом.

Таблиця 1.4

Блок S1

14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7
0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8
4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0
15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

Таблиця 1.5

Блок S2

13 1 8 14 6 11 3 4 9 7 2 13 12 0 5 10

Продовження табл. 1.5

3 13 4 7 15 2 8 14 12 0 1 10 6 9 11 5
0 14 7 11 10 4 13 1 5 8 12 6 9 3 2 15
13 8 10 1 3 15 4 2 11 6 7 12 0 5 14 9

Таблиця 1.6

Блок S3

10 0 9 14 6 3 15 5 1 13 12 7 11 4 2 8
13 7 0 9 3 4 6 10 2 8 5 14 12 11 15 1
13 6 4 9 8 15 3 0 11 1 2 12 5 10 14 7
1 10 13 0 6 9 8 7 4 15 14 3 11 5 2 12

Таблиця 1.7

Блок S4

7 13 14 3 0 6 9 10 1 2 8 5 11 12 4 15
13 8 11 5 6 15 0 3 4 7 2 12 1 10 14 9
10 6 9 0 12 11 7 13 15 1 3 14 5 2 8 4
3 15 0 6 10 1 13 8 9 4 5 11 12 7 2 14

Таблиця 1.8

Блок S5

2 12 4 1 7 10 11 6 8 5 3 15 13 0 14 9
14 11 2 12 4 7 13 1 5 0 15 10 3 9 8 6
4 2 1 11 10 13 7 8 15 9 12 5 6 3 0 14
11 8 12 7 1 14 2 13 6 15 0 9 10 4 5 3

Таблиця 1.9

Блок S6

12 1 10 15 9 2 6 8 0 13 3 4 14 7 5 11
10 15 4 2 7 12 9 5 6 1 13 14 0 11 3 8
9 14 15 5 2 8 12 3 7 0 4 10 1 13 11 6
4 3 2 12 9 5 15 10 11 14 1 7 6 0 8 13

Таблиця 1.10

Блок S7

4 11 2 14 15 0 8 13 3 12 9 7 5 10 6 1
13 0 11 7 4 9 1 10 14 3 5 12 2 15 8 6
1 4 11 13 12 3 7 14 10 15 6 8 0 5 9 2
6 11 13 8 1 4 10 7 9 5 0 15 14 2 3 12

Таблиця 1.11

Блок S8

13 2 8 4 6 15 11 1 10 9 3 14 5 0 12 7
1 15 13 8 10 3 7 4 12 5 6 11 0 14 9 2
7 11 4 1 9 12 14 2 0 6 10 13 15 3 5 8
2 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11

 4. Вихід С = С1 С2 … С8 перемішується фіксованою підстановкою Р2.

Таблиця 1.12

Підстановка Р2.

16 7 20 21 29 12 28 17 1 15 23 26 5 18 31 10
2 8 24 14 32 27 3 9 19 13 30 6 22 11 4 25

Розклад ключів.


Информация о работе «Розробка імовірнісної моделі криптографічних протоколів»
Раздел: Информатика, программирование
Количество знаков с пробелами: 142838
Количество таблиц: 20
Количество изображений: 5

Похожие работы

Скачать
58706
1
7

... захисту необхідно виявити можливі погрози безпеці інформації, оцінити їх наслідки, визначити необхідні заходи і засоби захисту і оцінити їх ефективність. [25] 1.3 Криптографічні методи захисту інформації   Криптографічний захист інформації — вид захисту інформації, що реалізується за допомогою перетворень інформації з використанням спеціальних даних (ключових даних) з метою приховування (або ...

Скачать
367716
10
48

... В АБС АКБ «ПРОМІНВЕСТБАНК» ТА ОЦІНКА РІВНЯ ВРАЗЛИВОСТІ БАНКІВСЬКОЇ ІНФОРМАЦІЇ 3.1 Постановка алгоритму задачі формування та опис елементів матриці контролю комплексної системи захисту інформації (КСЗІ) інформаційних об’єктів комерційного банку В дипломному дослідженні матриця контролю стану побудови та експлуатації комплексної системи захисту інформації в комерційному банку представлена у вигляді ...

Скачать
114386
2
2

... передбаченою. 3. Генерація гамми не повинна бути дуже трудомісткою. Слід зазначити, що алгоритми криптосистем з відкритим ключем (СВК) можна використовувати за трьома напрямками: 1. Як самостійні засоби захисту даних, що передаються чи зберігаються. 2. Як засіб для розподілу ключів. Алгоритми СВК більш трудомісткі, ніж традиційні криптосистеми. Обмін великими інформаційними потоками здійснюють ...

Скачать
294342
0
0

... ональних інтересів та безпеку інформаційного простору. Підсумки: В цьому розділі ми з’ясували, які саме зміни всередині урядових організацій, в їх структурі, функціях і методах роботи ініціює запровадження електронного уряду. А саме: відбувається перенесення акцентів з вертикальних на горизонтальні зв’язки всередині уряду, між різними його підрозділами і гілками влади. За рахунок створення внутрі ...

0 комментариев


Наверх