2.3 Силовой расчёт группы звеньев 5,4.
Выделим из механизма группу звеньев 4, 5, расставим все реальные нагрузки и силы и моменты сил инерции, реакции отброшенных звеньев. В точке D действует сила R65, которая равна R56 и направлена противоположно ей.
Неизвестными являются: сила взаимодействия 4 и 2 звена, сила взаимодействия 5 звена и стойки.
В точке С со стороны звена 2 на звено 4 действует сила R24. Ни величина, ни направление этой силы неизвестны, поэтому определяем её по двум составляющим: одну направим вдоль звена и назовём нормальной составляющей, а вторую перпендикулярно звену и назовём тангенциальной составляющей. предварительное направление этих составляющих выбираем произвольно, а действительное направление определиться знаком силы после вычислений.
Сначала определяем тангенциальную составляющую силы R24 из условия равновесия звена 4. Приравняв нулю сумму моментов сил относительно точки D, получим:
Нормальная составляющая силы R24 и сила RO1 находятся графическим методом из векторного многоугольника, построенного для группы звеньев 5, 4. Известно, что при силовом равновесии многоугольник, составленный из векторов сил, должен быть замкнутым:
Так как направления линий действия нормальной составляющей силы R24 и RO1 известны, то построив предварительно незамкнутый многоугольник из известных векторов сил, можно обеспечить его замыкание, если провести через начало первого и конец последнего вектора прямые, параллельные направлениям искомых сил. Точка пересечения этих прямых определит величины искомых векторов и их действительные направления.
Определим величины реакций в кинематических парах:
R24 = * = 1 * 26.6 = 26.6 Н
RO1 = * = 1 * 276.6 = 276.6 Н
2.4 Силовой расчёт группы звеньев 2, 3.
Выделим из механизма группу звеньев 2, 3, расставим все реальные нагрузки и силы и моменты сил инерции, реакции отброшенных звеньев. В точке C действует сила R24, которая равна R24 и направлена противоположно ей.
Неизвестными являются: сила взаимодействия 1 и 2 звена, сила взаимодействия 2 звена и ползуна.
В точке С со стороны звена 1 на звено 2 действует сила R12. Ни величина, ни направление этой силы неизвестны, поэтому определяем её по двум составляющим: одну направим вдоль звена и назовём нормальной составляющей, а вторую перпендикулярно звену и назовём тангенциальной составляющей. предварительное направление этих составляющих выбираем произвольно, а действительное направление определиться знаком силы после вычислений.
Сначала определяем тангенциальную составляющую силы R12 из условия равновесия звена 2. Приравняв нулю сумму моментов сил относительно точки А, получим:
Нормальная составляющая силы R12 и сила RВ находятся графическим методом из векторного многоугольника, построенного для группы звеньев 2, 3. Известно, что при силовом равновесии многоугольник, составленный из векторов сил, должен быть замкнутым:
Так как направления линий действия нормальной составляющей силы R24 и RO1 известны, то построив предварительно незамкнутый многоугольник из известных векторов сил, можно обеспечить его замыкание, если провести через начало первого и конец последнего вектора прямые, параллельные направлениям искомых сил. Точка пересечения этих прямых определит величины искомых векторов и их действительные направления.
Определим величины реакций в кинематических парах:
R12 = * = 1/2 * 377,8 = 188,9 Н
RВ = * = 1/2 * 55,4 = 27,7 Н
2.5 Силовой расчёт ведущего звена.
Ведущее звено обычно уравновешено, то есть центр масс его находится на оси вращения. Для этого требуется, чтобы сила инерции противовеса, установленного на продолжении кривошипа ОА, равнялась силе инерции звена ОА:
m = M1/lOA = 3.125/0.125 = 25 кг - масса единицы длины.
Отсюда можно определить массу противовеса m1, задавшись её расстоянием r1 от оси вращения. При r1 = 0,5 * l m1 = M1 (масса звена ОА).
В точке А на 1 звено со стороны 2 звена действует сила R21, момент которой относительно точки О равен уравновешивающему моменту.
В точке О при этом возникает реакция RО, равная и противоположно направленная силе R21. Если сила тяжести звена соизмерим с силой R21, то её необходимо учесть при определении реакции опоры О, которая может быть получена из векторного уравнения:
2.6 Силовой расчёт ведущего звена методом Жуковского.
К плану мгновенных скоростей механизма, повернутому на 900 в сторону вращения, прикладываем все силы, действующие на механизм, и составляем уравнение моментов действующих сил относительно полюса.
... напряжений; 4) определить размеры детали и округлить их до ближайших стандартных, согласно которым будет производится подбор сечений. 2.1 Выбор расчетной схемы В результате динамического анализа плоского рычажного механизма были определены внешние силы, которые действуют на каждое звено и кинематическую пару. Проектный расчет на прочность будем производить для группы Ассура 2-4 данного ...
... Найденные при силовом анализе механизма величины представлены в таблице 1.4. 57 48 65 0.22 0.6 0.8 0.79 0.7 0.9 73 1.9 Таблица 1.4. Силовой анализ механизма 2. ПРОЕКТНЫЙ РАСЧЕТ МЕХАНИЗМА НА ПРОЧНОСТЬ В результате динамического анализа плоского рычажного механизма были определены внешние силы, действующие на каждое ...
... длину вектора и переведем ее обратно: = 79 мм = 2370 Н 2. ПРОЕКТНЫЙ РАСЧЕТ ЗВЕНЬЕВ МЕХАНИЗМА НА ПРОЧНОСТЬ 2.1 Выбор расчетной схемы В результате динамического анализа плоского рычажного механизма были определены внешние силы, которые действуют на каждое звено и кинематическую пару. Такими внешними силами являются силы инерции , моменты инерции и реакции в кинематических парах R. Под ...
... 74 R05 24.4 0,005 G4 14,7 Fi4 7.02 R04 7.6 G5 24,5 Fi5 8.125 Fур 0,197 2 ПРОЕКТНЫЙ РАСЧЕТ МЕХАНИЗМА НА ПРОЧНОСТЬ В результате динамического анализа плоского рычажного механизма были определены внешние силы, действующие на каждое звено и кинематическую пару. Этими ...
0 комментариев