2.3 Структурный анализ кулачкового механизма

Трехзвенный кулачковый механизм состоит из стойки 0, кулачка 1, толкателя 2, ролика 2 (см. рисунок 4). Кулачок совершает равномерное вращательное движение с угловой скоростью ωк, толкатель совершает прямолинейное возвратно-поступательное движение со скоростью vА.

Рисунок 4 – Структурная схема кулачкового механизма

Классификация кинематических пар кулачкового механизма приведена в таблице 2.

Таблица 2 - Классификация кинематических пар

Обозначение Наименование Звенья Класс кинематической пары

О1

Вращательная Кулачок 1- стойка 0 5
А Кулачковая Кулачок 1- толкатель 2 4

А

Вращательная

(пассивная)

Ролик 2- толкатель 2

5
В Поступательная Толкатель 2- стойка 0 5

По формуле 1 определяем степень свободы кулачкового механизма:

где n=3;

p4=1;

p5=2.

W=3(3-1)-22-11=1


Для привода кулачкового механизма достаточно одного источника движения.


3. Кинематический анализ и синтез механизмов

Кинематический синтез механизмов сводится к определению основных размеров звеньев по структурным схемам и закономерностям движения. По полученным размерам строятся кинематические схемы механизмов.

Кинематический анализ механизмов сводится к решению следующих задач:

- разметка траектории движения всех звеньев механизма, позволяющая рационально спроектировать корпусные детали механизма;

- определение скоростей характерных точек механизма в различных его положениях, сто позволяет найти кинетическую энергию всех подвижных звеньев механизма;

- определение ускорений характерных точек механизма для последующего нахождения силы инерции звеньев.

Результаты аналитического анализа используют при динамическом исследовании агрегата.

3.1 Кривошипно-ползунный механизм

3.1.1 Кинематический синтез центрального кривошипно-ползунного механизма

Определяем ход поршня, h0,, м:

h0=, (3)

где vср – средняя скорость движения поршня, м/с;

n1 – частота вращения коленчатого вала, об/мин.

h0=м

Определяем радиус кривошипа, r, м:

r=h0/2, (4)

r=0,128/2=0,064 м

Определяем длину шатуна, l, м:

l=r/ λ, (5)

l=0,064х4,8=0,307 м

По известным размерам звеньев вычерчиваем кинематическую схему КПМ.

Определяем масштабный коэффициент длин, μl, м/мм:

μl=, (6)

где rист – истинное значение радиуса кривошипа, м;

О1А – отрезок на чертеже, отображающий ход поршня, мм.

μl= м/мм

3.1.2 Анализ кривошипно-ползунного механизма

3.1.2.1 Графический метод планов

Угол поворота кривошипа О1Аi разбиваем на 12 частей. За начало отсчета принимаем положение кривошипа и шатуна, соответствующее нижней мертвой точке ползуна. Из точек Аi циркулем отмеряем расстояние равное длине шатуна АВ в масштабе и на линии движения ползуна делаем засечки. Соединив точки Аi с соответствующими точками Вi,, получаем промежуточные положения шатуна.

Определяем положение ползуна в соответствующих точках, SBi, м:


SBi=, (7)

где SBi – положение ползуна на чертеже:


SB1=7 мм, SB2=28 мм, SB3=56 мм, SB4=91 мм, SB5=117 мм, SB6=128 мм.

SB1=7х10-3=0,007 м

SB2=0,028 м, SB3=0,056 м, SB4=0,91 м, SB5=0.117 м, SB6=0,128 м

На плане положений отмечаем точку S1, соответствующую положению центра тяжести кривошипа из соотношения ; точку S2,- центр тяжести шатуна из соотношения .

Для двенадцати положений КПМ необходимо построить совмещенные планы скоростей и ускорений.

Так как звено О1А совершает вращательное движение, то траекторией точки А является окружность с центром в точке О1.. Вектор скорости точки А направлен перпендикулярно радиусу О1А, в сторону вращения кривошипа.

Определяем скорость точки А, vAм/с:

vA1r=const, (8)

где ω1 – угловая скорость кривошипа, рад/с.

ω1=, (9)


где n1 – частота вращения коленчатого вала, м/с.

ω1= рад/с

vA=293,070,064=18,75 м/с

На чертеже строим вектор скорости vA, в виде отрезка pva=93,75 мм из полюса pvплана скоростей.

Определяем масштаб плана скоростей, μv, :

μv=, (10)

μv= 

Ползун совершает возвратно-поступательное движение, вектор скорости точки В направлен параллельно линии перемещения ползуна. Связь между скоростями точек А и В ползуна выражается векторным уравнением:

 

 vВ=vА+vВА, (11)

где vВ – вектор абсолютной скорости точки В;

vА – вектор скорости переносного движения полюса;

vВА – вектор относительной скорости точки В по отношению к точке А.

Вектор vВА направлен перпендикулярно текущему положению шатуна. На плане скоростей (чертеж ЧГУ.С.КП.150404.00.0.00.01) проводим этот вектор из точки а вектора  до линии действия скорости ползуна для всех 12 положений. На пересечении линий действия скоростей vВА и vВ находим точку Вi.

Определяем скорость точки В, м/с:


vВiv, (12)

vВ1=0,236=7,2 м/с

Определяем относительную скорость точки В относительно полюса-точки А, м/с:


vВАiv, (13)

vВА1 =0,283=16,6 м/с

Определяем угловую скорость шатуна, w2, рад/с:

w2i=vВАi /l, (14)

w2 1 =16,6 /0,307=54,07 рад/с

Определяем абсолютную скорость центра тяжести кривошипа, vS1,,м/с:

vS1= vА, (15)

vS1= 18,750,4=7,5 м/с

Определяем абсолютную скорость центра тяжести шатуна, vS2,,м/с:

vS2i= μv, (16)

vS21= 0,262=12,4 м/с

Результаты планов скоростей представим в виде таблицы 3.


Таблица 3 – Результаты планов скоростей КПМ

Номер

положения

vA, м/с

vВ,

м/с

vВА,

м/с

w2, рад/с

vS1,

м/с

vS2,

м/с

0 18,75 0 -18,75 -61 7,5 0
1 18,75 7,2 -16,2 -52,7 7,5 12,4
2 18,75 14,4 -9,4 -30,6 7,5 16
3 18,75 18,75 0 0 7,5 18,75
4 18,75 17,4 9,4 30,6 7,5 17,6
5 18,75 10,4 16,2 52,7 7,5 13,6
6 18,75 0 18,75 61 7,5 0
7 18,75 -11,2 -16,2 -52,7 7,5 -13,6
8 18,75 -18 -9,4 -30,6 7,5 -17,6
9 18,75 -18,75 0 0 7,5 -18,75
10 18,75 -14 9,4 30,6 7,5 -16,
11 18,75 -7,2 16,2 52,7 7,5 -12,4
12 18,75 0 -18,75 -61 7,5 0

 

Построение плана ускорений начинаем с вычисления ускорения точки А.

Полное ускорение точки А складывается из нормального аnАО1 и касательного аtАО1 ускорений:


аАО1nАО1tАО1, (17)

Определяем нормальное ускорение, аnАО1, м/с2:

аnАО1= vA ω1, (18)

аnАО1= 18,75293,07=5495,06 м/с2

Касательное ускорение определяется по формуле, м/с2:

аtАО11r, (19)

где ε1- угловое ускорение кривошипа, с-2.

При равномерном вращении кривошипа ε1==0

Следовательно ускорение аАО1nАО1=5495,06 м/с2

На плане ускорений строим вектор аАО1=110 мм из полюса pa параллельно текущему положению кривошипа в направлении от точки А к точе О1.

Определяем масштаб плана ускорений, μа, :


μа= аnАО1/paa, (20)

μа= 5495,06/110=50  

Определяем вектор ускорения точки В:

аВ= аАnВАtВА, (21)

где аnВА- нормальная составляющая относительного ускорения движения точки В шатуна по отношению к точке А кривошипа.

Направлен параллельно положению шатуна от точки В к точке А;

аtВА- касательная составляющая относительного ускорения аВА, направлен перпендикулярно вектору нормального ускорения

Определяем ускорение аnВА, м/с2:

аnВАi= v2ВАi/l, (22)

аnВА1= 16,22/0,307=854,85 м/с2

Определяем чертежное значение длины вектора аnВАi, мм:


аа1= аnВА1/ μа, (23)

аа1= 854,85/ 50=17,1 мм


Из точки а строим вектор аа1 параллельно текущему положению шатуна в направлении от точки Вi к точке Аi. Через точку а1 проводим линию действия касательного ускорения аtВi,, перпендикулярно данному положению шатуна до пересечения с линией перемещения ползуна - точка в.

Определяем ускорение точки В, аВ, м/с2:


аВi= μаpaв, (24)

аВ1= 5084=4200 м/с2

Определяем касательное ускорение шатуна, аtВА, м/с2:

аtВА= μаа1в, (25)

аtВА1= 5054=2700 м/с2

Соединяем точки а и в вектором ав, получаем полное ускорение аВА, точки В в относительном движении к полюсу точке А:

аВА1= μаав, (26)

аВА1= 5052=2600 м/с2

Определяем ускорение центра тяжести кривошипа, аS1,м/с2:

аS1= μарS1, (27)

аS1= 5044=2200 м/с2

Определяем ускорение центра тяжести шатуна, аS2, м/с2:

аS2= μарS2, (28)

аS2= 5095=4750 м/с2


Определяем угловое ускорение шатуна, ε2, с-2:

ε2tВА/l, (29)

ε2=2700/0,307=8795 с-2

Результаты планов ускорений представим в виде таблицы 4

Таблица 4 - Результаты планов ускорений

№ положения

аА, м/с2

аnВАi, м/с2

аВ,, м/с2

аtВА, м/с2

ε2, с-2

аS1, м/с2

аS2, м/с2

0 5495,06 5500 4200 0 0 2200 0
1 5495,06 854,85 4200 2700 8795 2200 4750
2 5495,06 287,8 3200 4700 15309,45 2200 4100
3 5495,06 0 1200 5700 18566,78 2200 3300
4 5495,06 287,8 2250 4700 15309,45 2200 3750
5 5495,06 854,85 5150 2700 8795 2200 5150
6 5495,06 5500 5950 0 0 2200 0
7 5495,06 854,85 5150 2700 8795 2200 5150
8 5495,06 287,8 2250 4700 15309,45 2200 3750
9 5495,06 0 1200 5700 18566,78 2200 3300
№ положения

аА, м/с2

аnВАi, м/с2

аВ,, м/с2

аtВА, м/с2

ε2, с-2

аS1, м/с2

аS2, м/с2

10 5495,06 287,8 3200 4700 15309,45 2200 4100
11 5495,06 854,85 4200 2700 8795 2200 4750
12 5495,06 4200 4200 0 0 2200 0

Информация о работе «Расчет машинного агрегата для получения электрической энергии с помощью генератора»
Раздел: Промышленность, производство
Количество знаков с пробелами: 42197
Количество таблиц: 36
Количество изображений: 6

Похожие работы

Скачать
102770
1
13

... использовать подобным образом, превышает 1020 Дж в год, т. е. сравнима С энергией, получаемой от сжигания химического топлива на Земном шаре в течение года». Использование новых источников энергии весьма важно для развития энергетики Крайнего Севера. §2.3.ПРЕОБРАЗОВАТЕЛЬ С КОЛЕБЛЮЩИМИСЯ МАГНИТАМИ   Фарадей открыл закон электромагнитной индукции с помощью постоянного магнита в виде стержня, ...

Скачать
106983
0
0

... (неочищенный газ при температуре, около 800oC) CO - в CO2 - 0,50 H2 - в H2O - 0,54 д) электроэнергия - 230 кВт·ч/т3 Формула изобретения: 1. Установка для получения расплавов железа, в частности расплавов стали, таких, как расплавы нерафинированной стали, включающая емкость электродуговой печи с боковыми стенками, крышкой и дном, внутри которой помещаются электроды, емкость для переплава, ...

Скачать
145927
16
16

... измерения энергии должна находится в пределах ±(0,1-2,5)%. 4.4 Зависимость погрешности дозирования от состава технических средств комплексов дозирования Поскольку в электротехнические комплексы дозирования помимо рассмотренных выше устройств цифрового дозирования количества электричества и электрической энергии входят также устройства коммутации и датчики тока и напряжения, то необходимо ...

Скачать
90315
1
9

... и целенаправленный путь. Электрическую энергию легко можно передавать на большие расстояния и непосредственно использовать для самых разнообразных целей. Все прежние машины и механизмы требовали «топлива», т. е. источника энергии, непосредственно на месте: паровая машина не в состоянии работать без достаточного количества топлива, ветряная мельница – без ветра, водяная мельница – без потока воды. ...

0 комментариев


Наверх