3.1.2.2 Аналитический метод
В основе аналитического метода лежат дифференциальные зависимости между перемещением, скоростью и ускорением.
Определяем перемещение ползуна, м:
ХВi=(1-)l+r, (30)
ХВ0= м
Текущее значение перемещений ползуна, м:
ХВ0=l-r, (31)
ХВ0=0,307-0,064=0,243 м
SBi=ХВi-ХВ0, (32)
SB0=0,243-0,243=0
Определяем скорость ползуна, м/с:
vВi== v’Вi+ v’’Вi, (33)
где v’Вi – первая гармоническая составляющая скорости точки В:
v’Вi=r, (34)
v’В0= м/с
v’’Вi–вторая гармоническая составляющая скорости точки В:
v’’Вi=-, (35)
v’’Вi0=-=0 м/с
vВi=0+0=0 м/с
Определяем ускорение ползуна, м/с2:
аВi=а’Вi+а’’Вi, (36)
где а’Вi – первая гармоническая составляющая точки В:
а’Вi= r, (37)
а’В0= м/с2
а’’Вi – вторая гармоническая составляющая точки В:
а’’Вi=-, (38)
а’’В0=- м/с2
аВi=5496,96-1145,2=4351,8 м/с2
Результаты расчетов перемещений, скоростей и ускорений для всех положений представим в виде таблицы 5.
Таблица 5 – Результаты расчетов аналитическим методом
№ положения | ХВi, м | SBi, м | vВi, м/с | v’Вi, м/с | v’’Вi, м/с | аВi, м/с2 | а’Вi, м/с2 | а’’Вi, м/с2 |
0 | 0,2430 | 0 | 0 | 0 | 0 | 4351,80 | 5496,96 | -1145,2 |
1 | 0,2502 | 0,0072 | 7,610 | 9,380 | -1,69 | 4187,77 | 4760,37 | -572,6 |
2 | 0,2703 | 0,0273 | 14,550 | 16,240 | -1,69 | 3321,08 | 2748,48 | 572,6 |
3 | 0,3007 | 0,0577 | 18,756 | 18,756 | 0 | 1145,20 | 0 | 1145,2 |
4 | 0,3340 | 0,0910 | 17,930 | 16,240 | 1,69 | -2175,8 | -2748,48 | 572,6 |
5 | 0,3610 | 0,1180 | 11,070 | 9,380 | 1,69 | -5333,0 | -4760,37 | -572,6 |
6 | 0,3710 | 0,1280 | 0 | 0 | 0 | -6242,2 | -5496,96 | -1145,2 |
7 | 0,3610 | 0,1180 | -11,07 | -9,38 | -1,69 | -5333,0 | -4760,37 | -572,6 |
№ положе ния | ХВi, м | SBi, м | vВi, м/с | v’Вi, м/с | v’’Вi, м/с | аВi, м/с2 | а’Вi, м/с2 | а’’Вi, м/с2 |
8 | 0,3340 | 0,0910 | -17,930 | -16,240 | -1,69 | -2175,8 | -2748,48 | 572,6 |
9 | 0,3007 | 0,0577 | -18,756 | -18,756 | 0 | 1145,2 | 0 | 1145,2 |
10 | 0,2703 | 0,0273 | -14,55 | -16,240 | 1,69 | 3321,08 | 2748,48 | 572,6 |
11 | 0,2502 | 0,0072 | -7,610 | -9,380 | 1,69 | 4187,77 | 4760,37 | -572,6 |
12 | 0,2430 | 0 | 0 | 0 | 0 | 4351,80 | 5496,96 | -1145,2 |
Определяем погрешности метода планов, , %:
v=, (39)
v1=
а=, (40)
а1=
Результаты погрешностей представим в виде таблицы 6
Таблица 6 – Погрешности метода планов
№ положениия | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
vi, % | 0 | 5,3 | 1,03 | 0,03 | 2,96 | 5,4 | 0 |
аi, % | 3,48 | 0,3 | 3,6 | 4,7 | 3,4 | 3,43 | 5,53 |
№ положениия | 7 | 8 | 9 | 10 | 11 | 12 |
vi, % | 0,45 | 0,4 | 0,03 | 3,8 | 5,3 | 0 |
аi, % | 3,43 | 3,4 | 4,7 | 3,6 | 0,3 | 3,48 |
... использовать подобным образом, превышает 1020 Дж в год, т. е. сравнима С энергией, получаемой от сжигания химического топлива на Земном шаре в течение года». Использование новых источников энергии весьма важно для развития энергетики Крайнего Севера. §2.3.ПРЕОБРАЗОВАТЕЛЬ С КОЛЕБЛЮЩИМИСЯ МАГНИТАМИ Фарадей открыл закон электромагнитной индукции с помощью постоянного магнита в виде стержня, ...
... (неочищенный газ при температуре, около 800oC) CO - в CO2 - 0,50 H2 - в H2O - 0,54 д) электроэнергия - 230 кВт·ч/т3 Формула изобретения: 1. Установка для получения расплавов железа, в частности расплавов стали, таких, как расплавы нерафинированной стали, включающая емкость электродуговой печи с боковыми стенками, крышкой и дном, внутри которой помещаются электроды, емкость для переплава, ...
... измерения энергии должна находится в пределах ±(0,1-2,5)%. 4.4 Зависимость погрешности дозирования от состава технических средств комплексов дозирования Поскольку в электротехнические комплексы дозирования помимо рассмотренных выше устройств цифрового дозирования количества электричества и электрической энергии входят также устройства коммутации и датчики тока и напряжения, то необходимо ...
... и целенаправленный путь. Электрическую энергию легко можно передавать на большие расстояния и непосредственно использовать для самых разнообразных целей. Все прежние машины и механизмы требовали «топлива», т. е. источника энергии, непосредственно на месте: паровая машина не в состоянии работать без достаточного количества топлива, ветряная мельница – без ветра, водяная мельница – без потока воды. ...
0 комментариев