Министерство образования Российской Федерации
Уфимский государственный нефтяной технический университет
Кафедра нефтехимии и химической технологии
Пояснительная записка к курсовому проекту
по курсу «Основные процессы и аппараты химической технологии»
на тему «Технологический расчет трубчатой печи»
Выполнил:
Проверил: доцент, к.т.н.
Зиганшин Г.К.
Уфа 2001
Содержание
1. Введение. 3
1.1 Назначение и основные характеристики огневых нагревателей. 3
1.2 Теплообмен в трубчатой печи. 4
1.3 Основные показатели работы трубчатых печей. 10
2. Расчетная часть. 12
2.1 Расчет процесса горения топлива. 12
2.2 Тепловой баланс трубчатой печи. Расчет коэффициента полезного действия и расхода топлива. 14
2.3 Выбор типоразмера трубчатой печи. 18
2.4 Упрощенный расчет камеры радиации. 20
2.5 Расчет диаметра печных труб. 25
2.6 Расчет камеры конвекции. 27
2.7 Гидравлический расчет змеевика трубчатой печи. 32
2.8 Упрощенный аэродинамический расчет дымовой трубы.. 40
Заключение. 46
Список использованных источников. 47
1. Введение
1.1 Назначение и основные характеристики огневых нагревателей
Трубчатая печь является аппаратом, предназначенным для передачи нагреваемому продукту тепла, выделяющегося при сжигании топлива, непосредственно в этом же аппарате.
Трубчатые печи широко распространены в нефтеперерабатывающей и нефтехимической промышленностях, они являются составной частью многих установок и применяются в различных технологических процессах, таких как перегонка нефти, мазута, каталитический крекинг и риформинг, гидроочистка, очистка масел и др.
В начальный период развития нефтеперерабатывающей промышленности для нагрева сырья использовались кубы; однако, они имели много существенных недостатков и поэтому теперь не применяются.
Трубчатые печи получили широкое распространение благодаря следующим своим особенностям. Их работа основывается на принципе однократного испарения, что обеспечивает либо более глубокий отгон при данной конечной температуре нагрева сырья, либо заданный отгон при более низкой температуре нагрева. Они обладают высокой тепловой эффективностью, так как в дополнение к основной части тепла, которая передается излучением, существенная часть передается конвекцией вследствие сравнительно высокой скорости движения дымовых газов. Помимо этого, трубчатые печи являются компактными аппаратами, их коэффициент полезного действия высок, они могут обеспечивать высокую тепловую мощность. Продолжительность пребывания нагреваемого сырья в зоне высоких температур не превышает нескольких минут, что уменьшает возможность его разложения и коксоотложения в трубах, вследствие чего при необходимости сырье можно нагревать до более высокой температуры. Печи удобны в эксплуатации, позволяют осуществлять автоматизацию.
В зоне нагрева трубчатых печей единовременно находится относительно небольшое количество нефтепродукта, что снижает пожарную опасность. В случае прогара труб пожар легче устранять.
1.2 Теплообмен в трубчатой печи
Трубчатая печь имеет камеры радиации и конвекции. В камере радиации (топочная камера), где сжигается топливо, размещена радиантная поверхность (экран), поглощающая тепло в основном за счет радиации.
В камере конвекции расположены трубы, воспринимающие тепло главным образом путем конвекции – при соприкосновении дымовых газов с поверхностью нагрева.
Сырье последовательно проходит через конвекционные и радиантные трубы и поглощает тепло; обычно радиантная поверхность воспринимает большую часть тепла, выделяемого при сгорании топлива.
Тепло эффективно передается излучением при охлаждении дымовых газов до 1000-1200 К. Снижение температуры дымовых газов до более низких значений часто бывает неоправданным, так как при этом радиантная поверхность работает с пониженной теплонапряженностью поверхности нагрева.
Эффективность теплопередачи конвекцией в меньшей степени зависит от температуры дымовых газов, поэтому таким способом тепло передается, когда передача тепла излучением оказывается недостаточно эффективной. Таким образом, конвекционная поверхность использует тепло дымовых газов и обеспечивает их охлаждение до температуры, при которой величина коэффициента полезного действия аппарата будет экономически оправданной.
Если тепло дымовых газов может быть использовано для иных целей, например, для подогрева воздуха или для производства водяного пара, то либо наличие конвекционной поверхности для нагрева сырья не является обязательным, либо размеры этой поверхности могут быть существенно уменьшены. При небольшой производительности иногда применяют печи без конвекционной поверхности, более простые в конструктивном отношении, но обладающие невысоким коэффициентом полезного действия.
Рассмотрим механизм процесса передачи тепла, протекающий в печи, на примере печи, состоящей из двух камер с настильным пламенем. Характерной особенностью этой печи является наклонное расположение форсунок внизу печи, обеспечивающих соприкосновение факела с поверхностью стены, размещенной в середине камер (рис.1).
1 – топочная камера;
2 – средняя излучающая стенка
с настильным пламенем;
3 – камера конвекции;
4 – трубы конвекционные;
5 – трубы радиантные.
I – сырье (ввод);
II – сырье (выход);
III – топливо и воздух.
Рис.1. Схема двухкамерной вертикальной печи с настильным пламенем.
В топочную камеру этой печи при помощи форсунки вводится распыленное топливо, а также необходимый для горения нагретый или холодный воздух. Высокая степень дисперсности топлива обеспечивает его интенсивное перемешивание с воздухом и более эффективное горение.
Соприкосновение факела с поверхностью стены обуславливает повышение его температуры; излучение происходит не только от факела, но и от этой раскаленной стены. Тепло, выделенное при сгорании топлива, расходуется на повышение температуры дымовых газов и частиц горящего топлива; последние раскаляются и образуют светящийся факел.
Температура, размер и конфигурация факела зависят от многих факторов и, в частности, от температуры и количества воздуха, подаваемого для горения топлива, способа подвода воздуха, от конструкции и нагрузки форсунки, теплотворной способности топлива, расхода форсуночного пара, величины радиантной поверхности (степени экранирования топки) и др.
При повышении температуры воздуха увеличивается температура факела, повышается скорость горения и сокращаются размеры факела. Размеры факела сокращаются и при увеличении (до известного предела) количества воздуха, поступающего в топку, так как избыток воздуха ускоряет процесс горения топлива.
При недостаточном количестве воздуха факел получается растянутым, топливо полностью не сгорает, что приводит к потере тепла. Чрезмерное количество воздуха недопустимо вследствие повышенных потерь тепла с отходящими дымовыми газами и более интенсивного окисления (окалинообразования) поверхности нагрева.
Воздух, необходимый для горения, часто подводят к устью форсунки, т.е. к началу факела. В некоторых форсунках топливо распыляется воздухом, который в этом случае вводится в топку совместно с топливом.
Во внутренней полости стен печей ряда конструкций размещается канал для подачи так называемого вторичного воздуха, позволяющий подводить необходимый для горения воздух по длине факела, что повышает температуру излучающей стенки и способствует более равномерной передаче тепла радиацией.
В такой печи тепло излучением передается от факела, излучающей стенки и трехатомных газов (двуокись углерода, водяной пар, диоксид серы), обладающих избирательной способностью поглощать и излучать лучи определенной длины волны.
Часть лучей через пространство между трубами попадает на поверхность кладки, вдоль которой расположены эти трубы; эти лучи разогревают кладку, и она, в свою очередь, излучает; при этом часть энергии поглощается той частью поверхности труб, которая обращена к стенке кладки.
Средняя излучающая стена с настильным пламенем, а также прочие стены кладки, у которых расположены трубы (экранированная часть кладки) или свободные от труб (незаэкранированные), принято называть вторичными излучателями.
Радиантные трубы получают тепло не только излучением, но также и от соприкосновения дымовых газов с поверхностью труб, имеющих более низкую температуру (теплопередача свободной конвекцией). Из всего количества тепла, воспринятого радиантными трубами, значительная часть (85-90 %) передается излучением, остальное конвекцией.
Наружная поверхность труб в свою очередь излучает некоторое количество тепла, т.е. имеет место процесс взаимоизлучения, однако температура поверхности труб вследствие непрерывного отвода тепла сырьем, проходящим через трубы, значительно ниже температуры других источников излучения и поэтому в итоге взаимоизлучения через поверхность радиантных труб сырью передается необходимое количество тепла.
В результате теплопередачи, осуществляемой в топочной камере, дымовые газы охлаждаются и поступают в камеру конвекции, где происходит их прямое соприкосновение с более холодной поверхностью конвекционных труб (вынужденная конвекция).
В камере конвекции передача тепла осуществляется также и за счет радиации трехатомных дымовых газов и от излучения стенок кладки. Наибольшее количество тепла в камере конвекции передается путем конвекции; оно достигает 60-70 % общего количества тепла, воспринимаемого этими трубами. Передача тепла излучением от газов составляет 20-30 %; излучением стенок кладки конвекционной камеры передается в среднем около 10 % тепла.
Основным фактором, предопределяющим эффективность передачи тепла конвекцией, является скорость движения дымовых газов, поэтому при конструировании трубчатых печей стремятся обеспечить ее наибольшее значение. Это достигается размещением минимального числа труб в одном горизонтальном ряду и выбором минимального расстояния между осями труб. Однако, при повышении скорости дымовых газов в камере конвекции увеличивается сопротивление потоку газов, что и ограничивает выбор величины скорости. С другой стороны, сокращение числа труб в одном горизонтальном ряду приводит к увеличению высоты камеры конвекции. Это обстоятельство также предопределяет выбор допустимой скорости движения дымовых газов в камере конвекции.
Существенным фактором, влияющим на эффективность передачи тепла, является способ размещения труб в камере конвекции. При расположении труб в шахматном порядке тепло передается эффективнее, чем при расположении коридорным способом, в связи с более интенсивной турбулентностью потока дымовых газов и лучшей обтекаемостью ими труб. При одинаковой скорости движения дымовых газов шахматное расположение труб обеспечивает более эффективную (на 20-30 %) передачу тепла по сравнению с коридорным.
Уменьшение диаметра труб также способствует более интенсивной передаче как за счет лучшей обтекаемости труб, так и в связи с возможностью более компактного их расположения, позволяющего создать более высокие скорости дымовых газов. Однако при уменьшении диаметра печных труб увеличивается скорость сырья и, следовательно, повышается сопротивление перемещению нагреваемого потока.
Во избежание повышенного сопротивления при применении печных труб меньшего диаметра, а также для печей большой производительности движение сырья осуществляется двумя или несколькими параллельными потоками.
Эффективность передачи тепла может быть повышена путем оребрения наружной поверхности конвекционных труб, так как в камере конвекции передача тепла сырью, проходящему через трубы, лимитируется в основном теплообменом со стороны дымовых газов и поэтому при оребрении увеличивается поверхность соприкосновения дымовых газов с трубами и обеспечивается передача большего количества тепла.
Передача тепла конвекцией зависит и от температурного напора, т.е. от разности температур между дымовыми газами и нагреваемым сырьем. Обычно эта разность температур убывает в направлении движения дымовых газов, так как температура дымовых газов снижается на большую величину, чем при этом повышается температура сырья.
При повышении температуры сырья на один градус дымовые газы охлаждаются на пять-семь градусов. Наибольший температурный напор наблюдается при входе дымовых газов в камеру конвекции, а наименьший – при их выходе. По этой причине в направлении движения дымовых газов убывает и количество тепла, поглощаемого трубами.
Доля тепла, передаваемого излучением в камере конвекции, значительно меньше, чем в камере радиации, как вследствие более низкой температуры газов, так и из-за меньшей толщины излучаемого газового потока. В камере конвекции эффективная толщина газового слоя предопределяется расстоянием между смежными рядами труб. Снижение температуры дымовых газов в направлении их движения, естественно, вызывает также и уменьшение передачи тепла излучением от них.
Конвекционные трубы, расположенные в первых рядах по ходу дымовых газов, получают больше тепла, как за счет конвекции, так и излучения и поэтому в отдельных случаях их теплонапряженность может быть выше теплонапряженности радиантных труб.
... из реакционной зоны твёрдых продуктов распада (сажи, кокса), благодаря чему отпадает необходимость в периодических остановках реактора для выжига кокса. Недостатками пиролиза углеводородного сырья в присутствии расплавленного теплоносителя являются необходимость нагрева и циркуляции теплоносителя, а также сложность отделения его от продуктов реакции. 1.2.5 Высокотемпературный пиролиз с ...
... . Достигается простым увеличением числа аппаратов и легко модернизи- руется на действующей установке. VIII. Извлечения из « Правил пожарной безопасности в нефтяной промышленности (ППБО-85) » ( глава 7) 7.5.7. Установки с огневым подогревом (трубчатые печи, блочные огневые нагреватели) 7.5.7.1. Площадка перед форсунками должна иметь твердое покрытие и уклон в сторону лотка, ...
... расчет величины затрат необходимых для внедрения этого проекта в производство. Оценить изменение себестоимости продукции получаемой в цехе первичной переработки нефти и получения битума. В цехе установлено две печи: для нагрева нефти П-1 и для подогрева мазута и пара П-3, после реконструкции должна быть установлена печь, которая полностью заменит обе печи П-1 и П-3. Производительность печи по ...
... их не превышает 0,74, теплонапряженность камер низкая, дымовые газы покидают конвекционную камеру при сравнительно высокой температуре (450-500°С). В 60-е годы на АВТ и других технологических установках начали широко применяться печи беспламенного горения с излучающими стенками (рисунок 3.2). Беспламенные панельные горелки 1 расположены пятью рядами в каждой фронтальной стене камеры радиации. ...
0 комментариев