2.7 Расчет ножен на прочность и устойчивость

Каждая ножна нагружена изгибающим M и крутящим T моментами, сжимающей F и срезающей F’ силами (см. рис.).

Продольная сила F является результатом распределения усилия FВ по ножнам:

F = FВ / 3.

Поперечная сила F’ – результатом распределения крутящего момента T по ножнам

, T = 109,2328 Н·м (см. п.1.2.4).


Изгибающий момент M возникает в результате действия поперечной силы F’:

M = F’·hНОЖ.

Обозначим dНОЖ1 = dНОЖ2 = dНОЖ1,2.

Напряжения в опасных сечениях:


Расчетные формулы:

Допускаемые напряжения определяем табличным методом, принимая во внимание знакопеременность нагрузки при изгибе, кручении и срезе, и при сжатии нагрузка пульсирующая.

Материал ножен сталь 20.

Допускаемые напряжения:

[sИЗ] = 95 МПа, [sСЖ] = 115 МПа, [tКР] = 55 МПа, [tСР] = 45 МПа.

Зададимся значениями: hНОЖ = 240,6 мм (определяется прорисовкой), D = 140 мм (конструкторское решение). Произведем вычисления:

– изгиб

– сжатие

– кручение

– срез

В результате принимаем dНОЖ1,2 = 24 мм.

Примем dНОЖ = 30 мм.

Рассчитаем теперь сварные швы (см. рис.). Сварные швы 1 и 2 нагружены изгибающим крутящим моментами, сжимающей силой (см. рис). Напряжения см. в таблице.

Напряжение в шве от
крутящего момента изгибающего момента
Шов 1

M = 0
2

T = 0

Суммарное напряжение для каждого шва:

,

,

где [t’] – допускаемое напряжение материала шва.

Материал ножен и дисков (верхнего и нижнего) сталь 20 ([sР] = 140 МПа), т.к. она хорошо сваривается. Тип технологического процесса сварки: ручная дуговая электродами Э42 и Э50;

[t’] = 0,6·[sР] = 0,6·140 МПа = 84 МПа.

Из расчета на прочность сварного шва найдем катет k шва:

– шов 1 (верхний)

– шов 2 (нижний)

Итак, катеты швов k1 » 2,053 мм, k2 » 4,705 мм.

Произведем расчет ножен на устойчивость.

Ножны подвергаются сжимающей нагрузке, проверим их на продольный изгиб:


где F – сжимающая сила:

;

A1 – площадь сечения dНОЖ:

;

j - коэффициент уменьшения допускаемого напряжения при продольном изгибе (см. таблицу) в зависимости от гибкости винта

;

l - свободная длина винта - расстояние между опорой винта и серединой гайки: l = hНОЖ (ml - приведенная длина винта); m - коэффициент приведения длины зависит от способа закрепления концов винта (см. рис.); i - осевой радиус инерции сечения винта:

.

l 0 10 20 30 40 50 60 80 100 120 140 160 180
j 1,00 0,98 0,96 0,93 0,89 0,85 0,80 0,7 0,5 0,37 0,28 0,23 0,19

Исходные данные для расчета:

hНОЖ = 240,6 мм,

dНОЖ = 30 мм,

[sСЖ] = 115 МПа

Произведем вычисления:

1) в данном случае можно считать, что m = 2 (см. рис.);

2) , l = hНОЖ,  

ножна в проверке на устойчивость нуждается;

3) по таблице определяем j = 0,78;

4) ,  ;

5) [sСЖ]j = 115 МПа·0,78 = 89,7 МПа;

6) sСЖ < [sСЖ]j  ножна устойчива.


2.8 Определение КПД винтового механизма

Разработка винтового механизма завершена. Определим его коэффициент полезного действия

где a – число заходов резьбы. В большинстве случаев КПД винтовых механизмов ниже 0,5.


Список использованной литературы

1.         В.Н. Бельков. Конструирование винтовых механизмов. Учебное пособие. Омск 2001.

2.         Анурьев В.И. Справочник конструктора-машиностроителя. В 3-х т. Т.1. – 5-е изд., перераб. И доп. – М.: Машиностроение, 1978. – 559 с., ил.

3.         Анурьев В.И. Справочник конструктора-машиностроителя. В 3-х т. Т.2. – 5-е изд., перераб. И доп. – М.: Машиностроение, 1978. – 727 с., ил.

4.         Иванов М.Н. Детали машин: Учеб. для студентов высш. техн. учеб. заведений. – 5-е изд., перераб.. – М.: Высш. шк., 1991. – 383 с.: ил.

5.         Решетов Д.Н. Детали машин: Учебник для студентов машиностроительных и механических специальностей вузов. – 4-е изд., перераб. и доп. – М.: Машиностроение, 1989. – 496 с.: ил.

6.         Детали машин: Атлас конструкций. Уч. пособие для машиностроительных вузов/ В. Н. Беляев, И. С. Богатырев, А. В. Буланже и др.; Под ред. д-ра техн. наук проф. Д. Н. Решетова. – 4-е изд., перераб. и доп. – М.: Машиностроение, 1979. – 367 с., ил.

7.         Курмаз Л. В. Детали машин. Проектирование: Учеб. пособие / Л. В. Курмаз, А. Т. Скойбеда. – Мн.: УП «Технопринт», 2001. – 290с.


Информация о работе «Конструирование винтового механизма»
Раздел: Промышленность, производство
Количество знаков с пробелами: 26794
Количество таблиц: 9
Количество изображений: 25

Похожие работы

Скачать
17936
3
3

... на кольцевой пяте будет равен: , (8) где  = 0,10…0,12 – коэффициент трения стальной чашки о стальной винт. По формуле (8) рассчитываем: 4. Расчет гайки Проектирование гайки Ходовая гайка винтового механизма должна иметь простую конструкцию, легко монтироваться, не проворачиваться в корпусе из-за момента трения в резьбе и не выпадать при ...

Скачать
170408
6
43

... ; фС- красный; 0-шина: изолированный контроль– белый; заземлённая нейтраль–чёрный. 2. ~; фаза–красный; 0–жёлтый. 3. –; (+)–красный; (–)–синий; нейтраль–белый.  Лекция 20. "Основы конструирования" Основы патентоведения 1.0 Введение –Изобретательство – важный фактор ТП.– Изобретательское право (ИП).– Открытия, Изобретения, Промышленные образцы – объекты изобретательского права (Субъекты ...

Скачать
32802
1
6

... . Р1=Рcosa,(36) Р1 – движущая сила, используемая для преодоления сил полезных сопротивлений: Р из Т.3=6 Н. Р1=5,66 Н. Fтр=0,55 H< Р1=5.66 H. Из этого следует, что толкатель при работе программного механизма не заклинит, и он будет двигаться по поверхности кулачка и отвечать заданной программе. Таким образом, конструкция спроектированного кулачка и толкателя соответствует требуемым ...

Скачать
29023
1
4

... , привода кинематической передачи и кулачкового механизма. Толкатель кулачкового механизма соединяется с исполнительным элементом системы управления движением летательного аппарата. Входной величиной программного механизма является число импульсов, подаваемых на шаговый электродвигатель, выполненный из электромагнита, храпового колеса, толкающей и стопорной собачек, а выходной – прямолинейное ...

0 комментариев


Наверх