3. Эксцентриситеты приложения нагрузок

-от опорной реакции балки покрытия в надкрановой части колонны:

 м;


-от опорной реакции балки покрытия в подкрановой части:

 м;

-от вертикального давления мостовых кранов на крайнюю колонну:

 м;

-от вертикального давления мостовых кранов на среднюю колонну:

 м;

-от стен и остекления в подкрановой части:

 м;

 


3. Статический расчет поперечной рамы

Составление задания на статический расчет поперечной рамы на ЭВМ

Так как при расчете на ЭВМ на расчетной схеме мы задаем не все эксцентриситеты приложения сил, то часть вертикальных сил принимаем как моменты с плечом е0i.

1. Постоянная нагрузка от собственного веса

При расчете на ЭВМ задаем:

– опорные реакции ригеля рамы: на крайних колоннах: FR,кр = 515,3 кН; на средней колонне: FR,ср = 1030,6 кН;

– момент в месте сопряжения ригеля с крайними колоннами:

МП1=FR,кр·е01 =515,3·0,15 =77,3 кН·м;

– момент в уступах крайних колонн задаем от веса стеновых панелей и остекления (89,88 кН), веса подкрановой балки (120,18 кН), надкрановой части колонны (32,13 кН) и опорной реакции ригеля (515,3 кН):

МП2 = –F1 ·е04+Fпб ·е03 – (FR,кр + Fкол,кр)·е02= –89,88·0,92+120,18·0,25 – (515,3+32,13)·0,45 = –44,17 кН·м;

– нагрузка от подкрановых балок прикладывается в уступе: на крайних колоннах: Fпб=120,18 кН; на средней колонне: Fпб_ср=240,36 кН;

Нагрузки от веса стеновых панелей и остекления и колонны учитываем как распределенные соответственно по высоте верхней ((89,88+33,95)/5,7=21,74 кН/м – для крайних; 33,95/5,7=5,95 кН/м – для средних) и нижней части колонны ((111,15+289,2)/12,3=32,6 кН/м – для крайних; 289,2/12,3=23,51 кН/м – для средних) .

2. Снеговая нагрузка

– опорные реакции ригеля рамы: на крайних колоннах: Fкр, сн =277,02 кН; на средней колонне: Fср, сн =554,04 кН;

– момент в месте сопряжения ригеля с крайними колоннами:

Мсн1= Fкр, сн·е01 =277,02·0,15=41,55 кН·м;

– момент в уступах колонн:

Мсн2 = Fкр, сн · е02 = 554,04 ·0,15 =83,11 кН;

3.Вертикальное давление от мостовых кранов

Вертикальная крановая нагрузка от 2-х сближенных кранах:

Мmin на крайнюю колонну:

Мmin=Dmin*е03=277,36∙0,25=69,34 кН∙м

Мmax=Dmax*е03=1218,46∙0,75=913,84 (кН∙м)

Мmax на крайнюю колонну:

Мmin=Dmin*е03=277,36∙0,75=208,02(кН∙м)

Мmax=Dmax*е03=2006,87∙0,25=501,72(кН∙м)

4. Горизонтальная нагрузка от торможения крановой тележки:

Расчетная горизонтальная сила Т, передаваемая подкрановыми балками от двух кранов при поперечном торможении на колонну от силы , определяется по формуле

Т=74,79 (кН)

5. Ветровую нагрузку принимаем линейно распределенной по высоте крайних колонн, сосредоточенную силу от ветровой нагрузки – приложенной в уровне ригеля

На основании полученных значений внешних воздействий производим определение внутренних усилий в элементах поперечной рамы, для следующих загружений:

1. постоянная нагрузка;

2. снеговая нагрузка;

3. вертикальная крановая нагрузка (от двух кранов) на левую колонну крайнего ряда;

4. вертикальная крановая нагрузка (от двух кранов) на колонну среднего ряда;

5. вертикальная крановая, от четырёх кранов, на колонну среднего ряда;

6. тормозная крановая на левую колонну крайнего ряда;

7. то же на колонну среднего ряда;

8. ветровая слева;

9. ветровая справа.

Результаты статического расчёта для элементов поперечной рамы представлены в таблице № 3.


4. Расчёт и конструирование крайней колонны

 

4.1 Характеристики бетона и арматуры

Для изготовления колонны применяется тяжёлый бетон класса В20, подвергнутый тепловой обработке при атмосферном давлении. Данный бетон имеет следующие характеристики прочности и деформативности: при коэффициенте условий работы γb2 = 1: Rb = 11,5 МПа; Rbt = 0,90 МПа; Eb = 24·10³ МПа.

В качестве продольной арматуры колонны принимаем арматуру класса А-III, d>10мм, имеющую следующие характеристики Rs = Rsc =365 МПа; Es = 2·105 МПа, поперечную арматуру принимаем класса А-I.

 

4.2 Расчёт прочности надкрановой части колонны

Размеры прямоугольного сечения: b = 380 мм; h = h2 = 600 мм; для продольной арматуры принимаем а = а' = 40 мм, тогда рабочая высота сечения

h0 = h – а = 600 – 40 = 560 мм.

Рассматриваем сечение 1-0 на уровне верха консоли, в котором действуют три комбинации расчётных усилий, приведённые в таблице. Так как в статическом расчёте рамы-блока по крайним рядам принимались по одной колонне, то для подбора арматуры расчётные усилия остаются те же (табл.№6).


Комбинации усилий для надкрановой части колонны Таблица №6

Вид усилия Величины усилий в комбинациях
Mmax Mmin Nmax
M, кН·м 36,59 74,65 181,81
N, кН 892,83 643,51 892,83

Усилия от всех нагрузок без учёта крановых и ветровых (см. табл.№5):

M' = 24,8 кН·м; N' =920,53 кН.

Усилия от продолжительно действующих (постоянных) нагрузок:

Ml = 18,88 кН·м; Nl =643,51кН.

Расчёт прочности сечения колонны должен выполнятся на 4 комбинации усилий, а расчётное сечение симметричной арматуры должно приниматься наибольшим. В целях упрощения количества расчётов, расчет прочности сечения колонны можно производить по наиболее опасному сочетанию нагрузок. В данном случае расчет производим по первому сочетанию нагрузок (Mmax ).

Расчётное сопротивление Rb принимаем с коэффициентом γb2 = 1,1, т.к. в комбинации включены постоянная, снеговая, крановая и ветровая нагрузки.

Расчёт в плоскости изгиба

Расчётная длина надкрановой части колонны в плоскости изгиба по табл. XIII.1 [1]; при учёте крановых нагрузок l0 = 2H2; без учёта крановых нагрузок l0=2,5H2. В данном случае l0 =2·5,7 =11,4 м.

Определяем гибкость надкрановой части колонны по формуле:

λ=l0/i, (3.2.1)

где i – радиус инерции сечения, м;


Так как минимальная гибкость в плоскости изгиба λ=l0/i =1140/17,32 =48,5>14, то необходимо учитывать влияние прогиба колонны на её несущую способность.

Случайные эксцентриситеты:

еа1 = l0/600 = 11,4/600 = 0,019 м = 19 мм;

ea2 = h/30 = 0,6/30 = 0,02 = 20 мм;

Эксцентриситет приложения нагрузки е0 = |M|/N =3659/892,83 = 4,1см <еа2= =20 мм, следовательно случайный эксцентриситет не учитываем.

Находим условную критическую силу Ncr и коэффициент увеличения начального эксцентриситета η.

, (IV.19[1])

где

δ = е0/h = 4,1/600 = 0,007< δе,

min = 0,5 – 0,01· l0/h – 0,01· Rb γb2 =0,5-0,14- 0,01∙11,5∙1,1 =0,234. Принимаем δ= 0,234.

I –момент инерции бетонного сечения, м4;

Is – приведённый момент инерции сечения арматуры, вычисляемый относительно центра тяжести бетонного сечения, и определяемый по формуле (3.2.3),м4;

, (3.2.2)

, (3.2.3)

μ – коэффициент армирования, в первом приближении задаёмся равным 0,01;

а=а/ =4см – расстояние от наружной грани до центра тяжести арматуры;

α =Es/Eb =200/24 =8,33

φl – коэффициент, учитывающий влияние длительного действия нагрузки на прогиб элемента в предельном состоянии, определяемый по формуле:

φl=1 + β∙Ml/M, (IV.20[1] )

M и Мl – моменты, определяемые относительно оси, параллельной границе сжатой зоны, проходящей через центр растянутой или менее сжатой (при полностью сжатом сечении) арматуры, соответственно от совместного действия всех нагрузок и от постоянной и длительной нагрузки;

β – коэффициент принимаемый согласно табл. IV.2[1], принимаем β=1.

Моменты М и МI одного знака, тогда коэффициент, учитывающий длительное действие нагрузки:

φl = 1 + β·|M1l/M1| = 1 + 1·240,16/139,88 =2,72;

M1l = Ml + Nl·(0,5·h – a) =18,88 +643,51·(0,38·0,6 – 0,04) =138,86 кН·м;

M1 = M + N·(0,5·h – a) =36,59+892,83∙0,29=240,16 кН·м.

φsp – коэффициент, учитывающий влияние предварительного напряжения арматуры на жёсткость элемента в предельном состоянии, принимаем равным 1 т.к. нет предварительного обжатия.

Определяем моменты инерции сечения:

Условная критическая сила

Определяем коэффициент увеличения начального эксцентриситета по формуле:

η=1/(1 – N/Ncr), (IV.18[1])

η = 1/(1 –892,83/7190) =1,14

Определяем высоту сжатой зоны сечения, из уравнения (3.2.4).

N=Rb∙b∙x +RscAs/ - RsAs (3.2.4)

Т.к. колонна имеет симметричное армирование, т.е. As = As/ и Rsc =Rs, то из уравнения (3.2.4), высота сжатой зоны сечения:

х = N/ Rb∙b, (3.2.5)

х=892,83/(1,1∙11500∙0,5)=14,1∙10-2м=14,1см

Относительная высота сжатой зоны: ξ=х/h0=14,1/56 =0,25.

Определяем значение граничной относительной высоты сжатой зоны:

, (II.42[1])


где w =0,85 -0,008 Rb =0,85 – 0,008∙1,1∙11,5=0,749- коэффициент полноты фактической эпюры напряжений в бетоне при замене её условной прямоугольной эпюрой; σsc,u =400 МПа т.к. γb2>1; σSR=Rs =365 МПа.

ξR =0.749/[1+365/400(1 – 0,749/1,1)]=0,58>ξ=0,211

Определение требуемой площади сечения поперечной арматуры

Требуемая площадь сечения продольной арматуры при симметричном армировании определяется по следующей формуле:

, (IV.38[1])

где, е – расчётный эксцентриситет продольной силы, определяемый по формуле:

е=е0 η +h/2 – а =4,1∙1,11 +30 – 4=30,55 см

Т.к. Аs<0, то площадь арматуры назначаем по конструктивным соображениям Аs =0,002bh0 =0,002∙38∙57=4,33см2. Принимаем 3d16A-III c As=6,03см2 по прил.VI.[1]; μ1=2∙6,03/(60∙38)= 0,004 для определения Ncrc ,было принято μ1=0,01 перерасчет не производим из-за небольшой разности в значениях μ1 и по причине конструктивного принятия сечения арматуры.

Проверку достаточности сечения арматуры не производим по остальным сочетаниям т.к. различие в продольной силе не значительны и они не могут существенно повлиять на сечения арматуры.

Расчёт из плоскости изгиба

За высоту сечения принимаем его размер из плоскости поперечной рамы, т.е. в этом случае h = b =380 мм. Расчётная длина надкрановой части из плоскости составляет

l0= ψ·H1= 1,5·5,7=8,55 м (табл. XIII.1[1]).

Расчёт сечения колонны в плоскости перпендикулярной плоскости изгиба не производим, т.л. гибкость из плоскости

l0//iу=855/10,97 =77,93< λ=l0/i=48,5, где .

 


Информация о работе «Технология строительства промышленного здания с использованием железобетонных конструкций»
Раздел: Строительство
Количество знаков с пробелами: 46745
Количество таблиц: 5
Количество изображений: 8

Похожие работы

Скачать
70933
10
0

... внутренние самонесущие стены, опирающиеся на перекры­тия и разделяющие пространство этажа здания на отдельные помещения. Полы. Основанием под полы в одноэтажных промышленных зданиях служит грунт, исключающий неравномерную осадку пола и обладающий достаточной прочностью. С грунта снимается растительный слой. Конструкция химически стойкого пола включает следующие элементы: бетонное основание (по ...

Скачать
15014
0
22

... (табл. 16–20).     10. Мероприятия по охране труда Главные мероприятия при охране труда при возведении одноэтажного промышленного здания базируются на требованиях СНиП 12.03–2002 Безопасность труда в строительстве. При монтаже железобетонных и стальных элементов конструкций необходимо предусматривать мероприятия по предупреждению воздействия на работников следующих опасных и ...

Скачать
317684
6
0

... , необходимых для осуществления проектного решения. СНиП 11-01-95 “Инструкция о порядке разработки, согласования, утверждения и составе проектной документации на строительство предприятий, зданий и сооружений”. Проект состоит из технологической и строительно-экономической частей. Экономическое обоснование технологической части выполняется инженерами-технологами и экономистами-технологами, а ...

Скачать
19576
1
4

... башни, промышленные трубы большой высоты, реакторы атомных электростанций и др.). В современной строительной практике ряда капиталистических стран (США, Великобритании, Франции и др.) монолитные железобетонные конструкции получили широкое распространение, что объясняется главным образом отсутствием в этих странах государственной системы унификации параметров и типизации конструкций зданий и ...

0 комментариев


Наверх