4.3 Расчёт прочности подкрановой части колонны
Т.к. подкрановая часть колонны имеет сплошное сечение, то расчёт выполняем аналогично расчету надкрановой части.
Размеры прямоугольного сечения: b = 500 мм; h = h1 = 900 мм; для продольной арматуры принимаем а = а' = 50 мм, тогда рабочая высота сечения h0 = h – а = 900 – 50 = 850 мм.
Комбинации усилий для надкрановой части колонны Таблица №6
Вид усилия | Величины усилий в комбинациях | ||
Mmax | Mmin | Nmax | |
M, кН·м | 330,19 | 545,43 | 348,29 |
N, кН | 2261,28 | 1663,61 | 2510,6 |
Q, кН | 20,99 | 55,68 | 106,03 |
Усилия от всех нагрузок без учёта крановых и ветровых (см. табл.№5):
M' = -7,81 кН·м; N' =1441,69 кН Q′=2,27 кН
Усилия от продолжительно действующих (постоянных) нагрузок:
Ml = -12,2кН·м; Nl =1164,67кН Q=3,31 кН
Расчет производим по третьему сочетанию нагрузок (Nmax ).
Расчётное сопротивление Rb принимаем с коэффициентом γb2 = 1,1, т.к. в комбинации включены постоянная, снеговая, крановая и ветровая нагрузки.
Расчёт в плоскости изгиба
Расчётная длина подкрановой части колонны в плоскости изгиба по табл. XIII.1 [1]; при учёте крановых нагрузок l0 = 1,5H1; l0 =1,5·12,3 =18,45 м.
Определяем гибкость надкрановой части колонны по формуле:
λ=l0/i, (3.2.1)
где i – радиус инерции сечения, м;
Так как минимальная гибкость в плоскости изгиба λ=l0/i =18,45/43,3=42,49>14, то необходимо учитывать влияние прогиба колонны на её несущую способность.
Случайные эксцентриситеты:
еа1 = l0/600 = 18,45/600 = 0,03 м =30 мм;
ea2 = h/30 = 1,5/30 =0,05=50 мм;
Эксцентриситет приложения нагрузки е0 = |M|/N =34829/2510,6=13,87> >еа2= 25мм, следовательно случайный эксцентриситет не учитываем.
Находим условную критическую силу Ncr и коэффициент увеличения начального эксцентриситета η по формуле (IV.19[1]).
δ = е0/h = 13,87/1500=0,009< δе,
min = 0,5 – 0,01· l0/h – 0,01· Rb γb2 =0,5-0,132-0,01∙11,5∙1,1 =0,242. Принимаем δ= 0,242.
α =Es/Eb =200/24 =8,33
Принимаем коэффициент армирования равным μ=0,01
Определяем моменты инерции сечения:
;
β – коэффициент принимаемый согласно табл. IV.2[1], принимаем β=1.
Моменты М и МI одного знака, тогда коэффициент, учитывающий длительное действие нагрузки:
φl = 1 + β·|M1l/M1| = 1 + 1·803,1/1001,37=1,8;
M1l = Ml + Nl·(0,5·h – a) = -12,2+1164,67·(0,5·1,5–0,05) =803,1 кН·м;
M1 = M + N·(0,5·h – a) = -7,81+1441,69∙0,7=1001,37 кН·м.
φsp – коэффициент, учитывающий влияние предварительного напряжения арматуры на жёсткость элемента в предельном состоянии, принимаем равным 1 т.к. нет предварительного обжатия.
Определяем моменты инерции сечения:
Условная критическая сила
Определяем коэффициент увеличения начального эксцентриситета по формуле:
η=1/(1 – N/Ncr), (IV.18[1])
η = 1/(1 –2510,6/9720) = 1,35
Определяем высоту сжатой зоны сечения, из уравнения (3.2.4).
N=Rb∙b∙x +RscAs/ - RsAs (3.2.4)
Т.к. колонна имеет симметричное армирование, т.е. As = As/ и Rsc =Rs, то из уравнения (3.2.4), высота сжатой зоны сечения:
х = N/ Rb∙b, (3.2.5)
х=2510,6/(1,1∙11500∙0,5)=22,8∙10-2м=22,8см
Относительная высота сжатой зоны: ξ=х/h0=22,65/150 =0,151.
Определяем значение граничной относительной высоты сжатой зоны по формуле (II.42[1]):
ξR =0,749/[1+365/400(1 – 0,749/1,1)]=0,58>ξ=0,324
w =0,85 -0,008 Rb =0,85 – 0,008∙1,1∙11,5=0,749σsc,u =400 МПа т.к. γb2>1;
σSR=Rs =365 МПа
ξR =0.749/[1+365/400(1 – 0,749/1,1)]=0,58>ξ=0,211
Определение требуемой площади сечения поперечной арматуры
Требуемая площадь сечения продольной арматуры при симметричном армировании определяется по следующей формуле:
, (IV.38[1])
где, е – расчётный эксцентриситет продольной силы, определяемый по формуле: е=е0 η +h/2 – а = 37,78∙1,17 +40 – 5=72,78 см
Т.к. Аs<0, то площадь арматуры назначаем по конструктивным соображениям Аs =0,002bh0 =0,002∙50∙150=15 см2. Принимаем 3d18A-III c As=7,63см2 по прил.VI.[1]; μ1=2∙7,63/(75∙50)= 0,004 для определения Ncrc ,было принято μ1=0,01 перерасчет не производим из-за небольшой разности в значениях μ1 и по причине конструктивного принятия сечения арматуры.
Расчёт из плоскости изгиба
За высоту сечения принимаем его размер из плоскости поперечной рамы, т.е. в этом случае h = b = 500 мм. Расчётная длина надкрановой части из плоскости составляет l0= ψ·H1= 0,8·12,3 =9,84 м (табл. XIII.1[1]).
Расчёт сечения колонны в плоскости перпендикулярной плоскости изгиба не производим, т.л. гибкость из плоскости l0//iу= 9,84/14,43 =6,8< λ=l0/i=48,5, где .
... внутренние самонесущие стены, опирающиеся на перекрытия и разделяющие пространство этажа здания на отдельные помещения. Полы. Основанием под полы в одноэтажных промышленных зданиях служит грунт, исключающий неравномерную осадку пола и обладающий достаточной прочностью. С грунта снимается растительный слой. Конструкция химически стойкого пола включает следующие элементы: бетонное основание (по ...
... (табл. 16–20). 10. Мероприятия по охране труда Главные мероприятия при охране труда при возведении одноэтажного промышленного здания базируются на требованиях СНиП 12.03–2002 Безопасность труда в строительстве. При монтаже железобетонных и стальных элементов конструкций необходимо предусматривать мероприятия по предупреждению воздействия на работников следующих опасных и ...
... , необходимых для осуществления проектного решения. СНиП 11-01-95 “Инструкция о порядке разработки, согласования, утверждения и составе проектной документации на строительство предприятий, зданий и сооружений”. Проект состоит из технологической и строительно-экономической частей. Экономическое обоснование технологической части выполняется инженерами-технологами и экономистами-технологами, а ...
... башни, промышленные трубы большой высоты, реакторы атомных электростанций и др.). В современной строительной практике ряда капиталистических стран (США, Великобритании, Франции и др.) монолитные железобетонные конструкции получили широкое распространение, что объясняется главным образом отсутствием в этих странах государственной системы унификации параметров и типизации конструкций зданий и ...
0 комментариев