4.3 Расчёт прочности подкрановой части колонны

Т.к. подкрановая часть колонны имеет сплошное сечение, то расчёт выполняем аналогично расчету надкрановой части.

Размеры прямоугольного сечения: b = 500 мм; h = h1 = 900 мм; для продольной арматуры принимаем а = а' = 50 мм, тогда рабочая высота сечения h0 = h – а = 900 – 50 = 850 мм.

Комбинации усилий для надкрановой части колонны Таблица №6

Вид усилия Величины усилий в комбинациях
Mmax Mmin Nmax
M, кН·м 330,19 545,43 348,29
N, кН 2261,28 1663,61 2510,6
Q, кН 20,99 55,68 106,03

Усилия от всех нагрузок без учёта крановых и ветровых (см. табл.№5):

M' = -7,81 кН·м; N' =1441,69 кН Q′=2,27 кН

Усилия от продолжительно действующих (постоянных) нагрузок:

Ml = -12,2кН·м; Nl =1164,67кН Q=3,31 кН

Расчет производим по третьему сочетанию нагрузок (Nmax ).

Расчётное сопротивление Rb принимаем с коэффициентом γb2 = 1,1, т.к. в комбинации включены постоянная, снеговая, крановая и ветровая нагрузки.

Расчёт в плоскости изгиба

Расчётная длина подкрановой части колонны в плоскости изгиба по табл. XIII.1 [1]; при учёте крановых нагрузок l0 = 1,5H1; l0 =1,5·12,3 =18,45 м.

Определяем гибкость надкрановой части колонны по формуле:

λ=l0/i, (3.2.1)

где i – радиус инерции сечения, м;

Так как минимальная гибкость в плоскости изгиба λ=l0/i =18,45/43,3=42,49>14, то необходимо учитывать влияние прогиба колонны на её несущую способность.

Случайные эксцентриситеты:

еа1 = l0/600 = 18,45/600 = 0,03 м =30 мм;

ea2 = h/30 = 1,5/30 =0,05=50 мм;

Эксцентриситет приложения нагрузки е0 = |M|/N =34829/2510,6=13,87> >еа2= 25мм, следовательно случайный эксцентриситет не учитываем.

Находим условную критическую силу Ncr и коэффициент увеличения начального эксцентриситета η по формуле (IV.19[1]).

δ = е0/h = 13,87/1500=0,009< δе,

min = 0,5 – 0,01· l0/h – 0,01· Rb γb2 =0,5-0,132-0,01∙11,5∙1,1 =0,242. Принимаем δ= 0,242.

α =Es/Eb =200/24 =8,33

Принимаем коэффициент армирования равным μ=0,01

Определяем моменты инерции сечения:

;

β – коэффициент принимаемый согласно табл. IV.2[1], принимаем β=1.

Моменты М и МI одного знака, тогда коэффициент, учитывающий длительное действие нагрузки:

φl = 1 + β·|M1l/M1| = 1 + 1·803,1/1001,37=1,8;

M1l = Ml + Nl·(0,5·h – a) = -12,2+1164,67·(0,5·1,5–0,05) =803,1 кН·м;

M1 = M + N·(0,5·h – a) = -7,81+1441,69∙0,7=1001,37 кН·м.

φsp – коэффициент, учитывающий влияние предварительного напряжения арматуры на жёсткость элемента в предельном состоянии, принимаем равным 1 т.к. нет предварительного обжатия.

Определяем моменты инерции сечения:

Условная критическая сила

Определяем коэффициент увеличения начального эксцентриситета по формуле:

η=1/(1 – N/Ncr), (IV.18[1])

η = 1/(1 –2510,6/9720) = 1,35

Определяем высоту сжатой зоны сечения, из уравнения (3.2.4).

N=Rb∙b∙x +RscAs/ - RsAs (3.2.4)

Т.к. колонна имеет симметричное армирование, т.е. As = As/ и Rsc =Rs, то из уравнения (3.2.4), высота сжатой зоны сечения:

х = N/ Rb∙b, (3.2.5)

х=2510,6/(1,1∙11500∙0,5)=22,8∙10-2м=22,8см

Относительная высота сжатой зоны: ξ=х/h0=22,65/150 =0,151.

Определяем значение граничной относительной высоты сжатой зоны по формуле (II.42[1]):

ξR =0,749/[1+365/400(1 – 0,749/1,1)]=0,58>ξ=0,324

w =0,85 -0,008 Rb =0,85 – 0,008∙1,1∙11,5=0,749σsc,u =400 МПа т.к. γb2>1;

σSR=Rs =365 МПа

ξR =0.749/[1+365/400(1 – 0,749/1,1)]=0,58>ξ=0,211

Определение требуемой площади сечения поперечной арматуры

Требуемая площадь сечения продольной арматуры при симметричном армировании определяется по следующей формуле:

, (IV.38[1])

где, е – расчётный эксцентриситет продольной силы, определяемый по формуле: е=е0 η +h/2 – а = 37,78∙1,17 +40 – 5=72,78 см

Т.к. Аs<0, то площадь арматуры назначаем по конструктивным соображениям Аs =0,002bh0 =0,002∙50∙150=15 см2. Принимаем 3d18A-III c As=7,63см2 по прил.VI.[1]; μ1=2∙7,63/(75∙50)= 0,004 для определения Ncrc ,было принято μ1=0,01 перерасчет не производим из-за небольшой разности в значениях μ1 и по причине конструктивного принятия сечения арматуры.

Расчёт из плоскости изгиба

За высоту сечения принимаем его размер из плоскости поперечной рамы, т.е. в этом случае h = b = 500 мм. Расчётная длина надкрановой части из плоскости составляет l0= ψ·H1= 0,8·12,3 =9,84 м (табл. XIII.1[1]).

Расчёт сечения колонны в плоскости перпендикулярной плоскости изгиба не производим, т.л. гибкость из плоскости l0//iу= 9,84/14,43 =6,8< λ=l0/i=48,5, где .

 


Информация о работе «Технология строительства промышленного здания с использованием железобетонных конструкций»
Раздел: Строительство
Количество знаков с пробелами: 46745
Количество таблиц: 5
Количество изображений: 8

Похожие работы

Скачать
70933
10
0

... внутренние самонесущие стены, опирающиеся на перекры­тия и разделяющие пространство этажа здания на отдельные помещения. Полы. Основанием под полы в одноэтажных промышленных зданиях служит грунт, исключающий неравномерную осадку пола и обладающий достаточной прочностью. С грунта снимается растительный слой. Конструкция химически стойкого пола включает следующие элементы: бетонное основание (по ...

Скачать
15014
0
22

... (табл. 16–20).     10. Мероприятия по охране труда Главные мероприятия при охране труда при возведении одноэтажного промышленного здания базируются на требованиях СНиП 12.03–2002 Безопасность труда в строительстве. При монтаже железобетонных и стальных элементов конструкций необходимо предусматривать мероприятия по предупреждению воздействия на работников следующих опасных и ...

Скачать
317684
6
0

... , необходимых для осуществления проектного решения. СНиП 11-01-95 “Инструкция о порядке разработки, согласования, утверждения и составе проектной документации на строительство предприятий, зданий и сооружений”. Проект состоит из технологической и строительно-экономической частей. Экономическое обоснование технологической части выполняется инженерами-технологами и экономистами-технологами, а ...

Скачать
19576
1
4

... башни, промышленные трубы большой высоты, реакторы атомных электростанций и др.). В современной строительной практике ряда капиталистических стран (США, Великобритании, Франции и др.) монолитные железобетонные конструкции получили широкое распространение, что объясняется главным образом отсутствием в этих странах государственной системы унификации параметров и типизации конструкций зданий и ...

0 комментариев


Наверх