Определение возможных радиационных потерь (поражений) в зонах радиоактивного заражения

Радиочастотная идентификационная метка на поверхностных акустических волнах
186145
знаков
44
таблицы
28
изображений

5.3 Определение возможных радиационных потерь (поражений) в зонах радиоактивного заражения

Возможные радиационные потери рабочих и служащих, населения определяют по дозе излучений, которую они могут получить за определенное время и в определенных условиях пребывания на зараженной местности.

При повторном облучении людей необходимо учитывать остаточную дозу облучения Дост., т. е. часть дозы облучения, полученной ранее, но не восстановленной организмом к данному сроку. Организм человека способен восстанавливать до 90% радиационного поражения, причем процесс восстановления начинается через 4 суток от начала первого облучения. Значения остаточной дозы облучения зависят от времени, прошедшего после облучения:

Доза облучения, которую получат рабочие и служащие за установленное время работы в производственных зданиях Дуст. = 10 Р

Определяем остаточную дозу излучения. Остаточная доза излучения определяется в зависимости от времени после облучения, в нашем случае остаточная доза облучения будет равна Дост.=0 Р

Находим суммарную дозу радиации

 

Дсум. = Дост. + Дуст = 0 + 10 = 10 Р.

Возможные радиационные потери составляют 0% при суммарной дозе радиации в 10 Р.

Выводы. Выполнение работ в условиях радиоактивного заражения в ООО НПЦ «ЭЛИОН» будет безопасно для жизни людей, так как возможные потери составят 0% персонала.


Заключение

 

В основном части настоящего дипломного проекта был произведен выбор материала подложки метки на ПАВ, материала напыляемых электродных структур, вида приемо-передающего ВШП и ВШП отражательной системы. Определена конструкция устройства. Произведен расчет выбранных конструктивных элементов. Кроме того предложен технологический маршрут изготовления метки. Также рассмотрен возможный вариант корпусировки метки и вариант согласования метки с антенной. Таким образом спроектировано устройство, готовое к последующим измерительным испытаниям.

В разделе «Безопасность жизнедеятельности и охрана окружающей среды» рассмотрены опасные и вредные факторы при производстве РЧИД-меток на ПАВ и необходимые мероприятия по их устранению.

В следующем разделе была произведена оценка устойчивости работы предприятия ООО НПЦ «Элион» в в условиях проникающей радиации и радиационного загрязнения местности после ядерного взрыва, на котором будут производиться метки. Рассчитаны режимы работы персонала в данной чрезвычайной ситуации. Производство оснащено необходимыми средствами противорадиационной безопасности, убежищем. Таким образом обеспечиваются нулевые потери персонала во время ядерного взрыва.

В экономическом разделе произведена оценка эффективности производства предлагаемого устройства. Рассчитана себестоимость РЧИД-метки на ПАВ. Произведенный расчет коммерческой эффективности проекта подтверждает возможность внедрение разработки в крупносерийное производство.

В целом удалось решить задачи по проектированию конкурентоспособного устройства, имеющего низкую стоимость, малые габаритные размеры, хорошие эксплуатационные характеристики, такие как долговечность, приемлемые вносимые затухания в передаваемый сигнал.

Выбранная технология изготовления устройства позволит создавать в дальнейшем более высокочастотные и, следовательно, более быстродействующие метки, а так же повысить емкость хранимых меткой данных.


Список литературы

1.         Справочник на ОнРу.ру - Штрихкоды, штрих код, расшифровка, сканер штрихкода, штрих коды стран. 2009. – URL: http://www.onru.ru (дата обращения: 10.05.09).

2.         М. Гудин., В. Зайцев, Технология RFID: реалии и перспективы//Компоненты и технологии –2003. – №4.

3.         Технологии радиочастотной идентификации (RFID). 2009. – URL: http://www.bitlite.ru (дата обращения: 25.01.09).

4.         Что такое RFID? - Штрих Центр. – URL: http://shtrih-center.ru (дата обращения: 25.01.09).

5.         Т. Шарфельд. Системы RFID низкой стоимости / Под ред. С. Корнеева. - Москва, - 2006 г.

6.         О. Гуреева. JOMFUL – новая технология производства радиочастотных меток // Компоненты и технологии. – 2006. – №11.

7.         О. Гуреева. Система радиочастотной идентификации на поверхностных акустических волнах // Компоненты и технологии. – 2006. - №6.

8.         В. Ф. Катаев, А. В. Гусаков, В. А. Жуков. Устройство обнаружения (идентификации) объектов с помощью линии задержки на ПАВ//Новые методы теоретических и экспериментальных исследований материалов, приборов и технологий: сб. науч. тр./Волгодонский ин-т. ЮРГТУ. – Новочеркасск: ЮРГТУ, 2001. – С.56-58.

9.         М. Федоров, Стандарты и тенденции развития RFID-технологий//Компоненты и технологии. – 2006. – № 1.

10.      Документация СКУД ЭСКОР |ESCOR-SAW. 2009. – URL: http://www.sawpik.com (дата обращения: 10.05.09).

11.      О. Гуреева. Новый протокол Gen 2 для систем радиочастотной идентификации // Компоненты и технологии. – 2006. – №1.

12.      Материалы для акустоэлектронных устройств: учебное пособие / Балышева О.Л.; ГУАП. СПб., 2005. 50с.: ил.

13.      Карапетьян Г.Я., Багдасарян С.А. «Однонаправленный преобразователь поверхностных акустических волн», Патент на изобретение 2195069, приоритет 08.04.2002 г. БИ №35, 2002.

14.      Устройства интегральной электроники: Акустоэлектроника. Основы теории, расчета и проектирования: учеб. пособие / Дмитриев В.Ф.; ГУАП. – СПб., 2006. – 169 с.: ил.

15.      Проектирование фильтров на поверхностно-акустических волнах: учебно-методическое пособие / Чернышова Т.И.; ТГТИ – Тамбов., 2006. – 48 с.: ил.

16.      Орлов В.С., Бондаренко В.С. Фильтры на поверхностных акустических волнах. – М.: Радио и связь, 1984. – 272 с., ил.

17.      Фильтры на поверхностных акустических волнах (расчет, технология и применение): Пер. с англ./Под ред. Г. Мэттьюза. – М.: Радио и связь, 1981. – 472 с., ил.

18.      С. Бобков, Э. Врублевский, В. Киреев, В. Недзвецкий, А. Трепалин, И. Томпсон, Г. Дойл, Н. Хуснатдинов, Д. Лабрейк. Возможности и особенности наноимпринтлитографии для производства интегральных микросхем//Наноиндустрия. – 2007. – №3.

19.      3D RFID Tag Invariant to its Orientation P. A. Turalchuk; D. V. Kholodnyak; I. B. Vendik; A. B. Mikhailov; S. Yu. Dudnikov Microwave and Telecommunication Technology, 2006. CriMiCO apos;06. 16th International Crimean Conference Volume 2, Issue , Sept. 2006 Page(s):613 - 615

20.      Ротхаммель К. Антенны: Пер. с нем. – 3-е изд., доп. – М.: Энергия, 1979. – 320 с., ил. – (Массовая радиобиблиотека; Вып. 998).

21.      Как укоротить диполь//Радио. – 1986. – №6. – С. 64.

22.      Расчет и изготовление плоских катушек//Радио. – 1976. – №11. – С. 40-41.

23.      Методические указания к выполнению индивидуальных домашних заданий по курсу «Организация и планирование производства» / Круглова Е.Ю., Плотникова Е.Н.; ВИ ЮРГТУ – Новочеркасск: ЮРГТУ (НПИ), 2008. – 31 с.

24.      Методические указания к выполнению раздела «Безопасность жизнедеятельности» в дипломном проекте (для технических специальностей) / Ермолаева Н.В., Бубликова И.А., Салов Е.В.; ВИ ЮРГТУ – Новочеркасск: ЮРГТУ (НПИ), 2002. – 20 с.

25.      Химпэк. О компании. 2009. – URL http://www.chempack.ru (дата обращения: 5.05.09).

26.      Экология и безопасность жизнедеятельности: Учеб. пособие для вузов/ Д.А. Кривошеин, Л.А.Муравей, Н.Н. Роева и др.; Под ред. Л.А. Муравья. – М.: ЮНИТИ-ДАНА, 2000. - 447 с.

27.     


Информация о работе «Радиочастотная идентификационная метка на поверхностных акустических волнах»
Раздел: Коммуникации и связь
Количество знаков с пробелами: 186145
Количество таблиц: 44
Количество изображений: 28

Похожие работы

Скачать
326231
12
0

... рисунков в формате А0-А1 со скоростью 10-30 мм/с. Фотонаборный аппарат Фотонаборный аппарат можно увидеть только в солидной полиграфической фирме. Он отличается своим высоким разрешением. Для обработки информации фотонаборный аппарат оборудуется процессором растрового изображения RIP, который функционирует как интерпретатор PostScript в растровое изображение. В отличие от лазерного принтера в ...

0 комментариев


Наверх