1.1.4 Спектральный анализ
Спектральный анализ – это метод обработки сигналов, который позволяет выявить частотный состав сигнала. Поскольку анализируемые сигналы во многих случаях имеют случайный характер, то важную роль в спектральном анализе играют методы математической статистики. Частотный состав сигналов определяют путем вычисления оценок спектральной плотности мощности (СПМ). Задачами вычисления СПМ являются обнаружение гармонических составляющих в анализируемом сигнале и оценивание их параметров. Для решения указанных задач требуется соответственно высокая разрешающая способность по частоте и высокая статистическая точность оценивания параметров. Эти два требования противоречивы. Аргументы в пользу выбора высокого разрешения или высокой точности оценки СПМ зависят от того, что интересует исследователя: устойчивые оценки в пределах всего диапазона частот или высокая степень обнаруживаемости периодических составляющих.
Все методы цифрового спектрального анализа можно разделить, на две группы [6-7]: классические методы, базирующиеся на использовании преобразований Фурье, и методы параметрического моделирования, в которых выбирается некоторая линейная модель формирующего фильтра и оцениваются его параметры. К первой группе относят корреляционный и периодограммные методы. Ко второй группе относят методы оценивания СПМ на основе авторегрессии скользящего среднего и др.
Периодограммный метод обеспечивает вычисление оценки СПМ непосредственно по числовой последовательности х[nТ0], формируемой путем дискретизации стационарного эргодического случайного процесса x(t). Периодограммная оценка СПМ равна [6-7]
(1.18)
Выражение (1.18) соответствует возможности вычисления СПМ с помощью преобразования Фурье непосредственно по реализации исходного сигнала.
Вычисленная с помощью (1.18) оценка СПМ является несостоятельной, т.е. с увеличением N она не улучшается. Для получения состоятельной оценки ее необходимо сглаживать. Кроме этого, при выполнении преобразования Фурье последовательности х[nТ0] конечной длины /V происходит «размывание» спектра, которое также оказывает влияние на состоятельность оценки СПМ.
Ограничение последовательности х[nТ0] конечным числом значений равносильно умножению исходной бесконечной последовательности х0 [nТ0] на другую последовательность
(1.19)
которую называют прямоугольным окном. Тогда можно записать
(1.20)
Преобразование Фурье последовательности х[nТ0] равно свертке преобразований Фурье последовательности х0 [nТ0] и прямоугольного окна w[nТ0]
(1.21)
Рисунок 1.2 – Размывание спектра: (а – исходная бесконечная последовательность; б – модуль преобразования Фурье от х0 [nТ0]; в - последовательность х0 [nТ0], умноженная на прямоугольное окно; г - модуль преобразования Фурье последовательности х[nТ0])
При выборе оконных функций используются следующие параметры: ширина основного лепестка, максимальный уровень боковых лепестков, скорость спадания уровня боковых лепестков [6,7,10].
Здесь ширина основного лепестка определена на уровне 3 дБ ниже его максимума и измерена в единицах разрешения преобразования Фурье, т.е. 2π/N, где N - длина окна.
Для повышения состоятельности оценки (1.18) выполняют её сглаживание. Имеется несколько методов сглаживания: Даньелла, Бартлетта, Уэлча [6,7].
Метод Даньелла основан на осреднении значений СПМ в пределах смежных спектральных частот.
В соответствии с методом Бартлетта состоятельность оценки СПМ повышают усреднением оценок СПМ коротких реализаций, полученных из
одной реализации длиной N отсчетов. Пусть дана реализация длиной N отсчетов. Она разбивается на ns неперекрывающихся сегментов, длиной Ns=N/s отсчетов. Для каждого сегмента по формуле (1.18) вычисляется выборочная оценка СПМ. Сглаженная оценка СПМ получается путем усреднения по всем n, сегментам
(1.30)
Если последовательность х[n] представляет нормальный стационарный эргодический процесс, то сглаженная оценка имеет дисперсию обратно пропорциональную числу сегментов n.
Спектральное разрешение оценки задается приближенным равенством
(1.31)
В методе Уэлча подход Бартлетта применяется к перекрывающимся сигментам исходной последовательности х[n], и каждый сегмент взвешивается с помощью оконной функции для уменьшения смещения оценок из-за эффекта «просачивания» энергии в боковые лепестки. Цель перекрытия сегментов - увеличить число усредняемых участков при фиксированной длине последовательности и тем самым повысить точность оценок СПМ. Метод Уэлча - один из самых распространенных периодограммных методов [6,7].
Обозначим через величину сдвига между сегментами, которая должна удовлетворять условию , где - максимальное имя корреляции анализируемого процесса. При выполнении этого условия получим p=int[(N-Ns)/+l]слабо коррелированных сегментов. Отсчеты каждого сегмента взвешиваются окном w[n]
(1.32)
Выборочное значение СПМ сегмента р оценивается по формуле
(1.33)
где
(1.34)
(1.35)
Сглаженная оценка периодограммы Уэлча вычисляется по формуле
(1.36)
Введение перекрытия сегментов в методе Уэлча позволяет уменьшить изменчивость оценки СПМ, Так же как и в методе Бартлетта, дисперсия оценки СПМ по методу Уэлча обратно пропорциональна числу сегментов, но благодаря большему числу сегментов, значение дисперсии будет меньше.
... и менеджмента Санкт-Петербургского Государственного технического университета соответствовал поставленной цели. Его результаты позволили автору разработать оптимальную методику преподавания темы: «Использование электронных таблиц для финансовых и других расчетов». Выполненная Соловьевым Е.А. дипломная работа, в частности разработанная теоретическая часть и план-конспект урока представляет ...
... разработки программ, но и разработку пакетов прикладных программ. Эти разработки должны обеспечивать высокое качество и вестись примерно так же, как и выпуск промышленной продукции. Достижения компьютерной техники 1. Универсальные настольные ПК Что такое настольный компьютер, объяснять никому не надо — это любимое молодежью устройство, чтобы красиво набирать тексты рефератов, а ...
... информация должна поступать в декодер при восстановлении звукового сигнала. Декодер преобразует серию сжатых мгновенных спектров сигнала в обычную цифровую волновую форму. Audio MPEG - группа методов сжатия звука, стандартизованная MPEG (Moving Pictures Experts Group - экспертной группой по обработке движущихся изображений). Методы Audio MPEG существуют в виде нескольких типов - MPEG-1, MPEG-2 и ...
... с применением полиграфических компьютерных технологий? 10. Охарактеризуйте преступные деяния, предусмотренные главой 28 УК РФ «Преступления в сфере компьютерной информации». РАЗДЕЛ 2. БОРЬБА С ПРЕСТУПЛЕНИЯМИ В СФЕРЕ КОМПЬЮТЕРНОЙ ИНФОРМАЦИИ ГЛАВА 5. КОНТРОЛЬ НАД ПРЕСТУПНОСТЬЮВ СФЕРЕ ВЫСОКИХ ТЕХНОЛОГИЙ 5.1 Контроль над компьютерной преступностью в России Меры контроля над ...
0 комментариев