Министерство образования и науки Украины

Севастопольский национальный технический университет

КУРСОВАЯ РАБОТА

по дисциплине

«Сигналы и процессы в радиотехнике»

Выполнил студент: Гармаш М. А.

Группа: Р-33 д

Номер зачётной книжки: 212467

Допущен к защите

Защищен с оценкой

Руководитель работы

__________________

Агафонцева О. И.

__________________ «  »__________ 2003 г. « »________ 2003 г.

Севастополь

2003


Содержание

1 ЗАДАНИЕ

2 ЗАДАНИЕ

3 ЗАДАНИЕ

4 ЗАДАНИЕ

5 ЗАДАНИЕ

6 ЗАДАНИЕ

7 ЗАДАНИЕ

ПЕРЕЧЕНЬ ССЫЛОК


Задание 1

 Условие:

На безынерционный нелинейный элемент, ВАХ которого аппроксимирована кусочно - ломаной линией с крутизной линейного участка  и напряжением отсечки подано напряжение .

Требуется:

1.   Составить уравнение ВАХ нелинейного элемента.

2.   Рассчитать и построить спектр выходного тока вплоть до десятой гармоники. Построить временные диаграммы входного напряжения, тока, протекающего через элемент и его первых четырёх гармоник.

3.   Определить углы отсечки и напряжения смещения , при которых в спектре тока отсутствует: а) вторая гармоника; б) третья гармоника.

4.   Найти угол отсечки и напряжение смещения , соответствующие максимуму амплитуды третьей гармоники для случая, когда .

5.   Построить колебательную характеристику и описать её особенности. Найти напряжение смещения , соответствующее ее линейности.

Исходные данные приведены ниже:

S=45ма/А; U1=-3 В; U0=-2 В; Um=2 В.

Решение:

1. Воспользовавшись [1] составим уравнение ВАХ нелинейного элемента , которое определяется по формуле

(1.1)

Импульсы выходного тока можно рассчитать по формуле:

(1.2)

График изображен на рисунке 1.1

Рисунок 1.1 -

а) График ВАХ уравнения нелинейного элемента.

б) График выходного тока .

в) График входного напряжения.

2. Рассчитаем спектр выходного тока. Известно, что спектр тока рассчитывается по формуле:

, (1.3)

где - амплитуда -ой гармоники тока;

- амплитуда импульсов тока; n- номер гармоники (n=0,1,…,10);

- коэффициенты Берга,

Q-угол отсечки, определяемый по формуле:

 . (1.3)

Подставив численные значения находим Q=2.094. Строим спектрограмму выходного тока используя [3]. Спектр показан на рисунке 1.2

(1.4) (1.6)

(1.5)

 

Рисунок 1.2 – Спектрограмма выходного тока

Теперь построим графики первых четырёх гармоник при помощи [3]:

Рисунок 1.3 - графики первых четырёх гармоник

3. Определим угол отсечки и смещение, при котором в спектре тока отсутствует n-я гармоника, что в соответствии с (1.3), можно определить путём решения уравнения :

.  (1.7)

Результат показан ниже :

для 2 гармоники Q1 = 0, Q2 = 180;

для 3 гармоники Q = 0, Q2 = 90, Q = 180;

 Проведём суммирование гармоник:

Рисунок 1.4 - сумма первых десяти гармоник

4. Угол отсечки, соответствующий максимуму n-ой гармоники в спектре тока (при ) определяется по формуле:

(1.8)

Угол отсечки равен 60. Определим соответствующее напряжение смещения U0 из формулы(1.3).В итоге получим :

Подставляя численные значения получим U0= - 2В.

 5. Колебательная характеристика нелинейного элемента определяется зависимостью амплитуды первой гармоники тока , протекающего через нелинейный элемент, от амплитуды входного напряжения:

.

Поскольку >U1, то вид характеристики определяется по формуле:

.  (1.9)

где- средняя крутизна, определяемая cоотношением:

 : . (1.10)

(1.11))

 
Построим колебательную характеристику используя формулу (1.6) с учетом этой

Колебательная характеристика изображена на рисунке 1.5:

Рисунок 1.5 – Колебательная характеристика

 


Задание 2

 

Условие:

На вход резонансного умножителя частоты, выполненного на полевом транзисторе (рисунок 2) подано напряжение , где - частота сигнала. Нагрузкой умножителя является колебательный контур с резонансной частотой , ёмкостью  и добротностью . Коэффициент включения катушки -. Сток - затворная характеристика транзистора задана в виде таблицы 3 и может быть аппроксимирована в окрестности  полиномом:

.

Таблица 1 - Характеристика транзистора к заданию 2

, В

-12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0

, мА

1,6 1,8 2,1 2,5 3 3,8 4,8 6 7,5 9 12 15 20

 

Требуется:

1.   Построить ВАХ полевого транзистора. Изобразить временные диаграммы входного напряжения, тока стока и выходного напряжения умножителя.

2.   Определить коэффициенты аппроксимирующего полинома .

3.   Рассчитать спектр тока стока и спектр выходного напряжения умножителя. Построить соответствующие спектрограммы и найти коэффициент нелинейных искажений выходного напряжения.

4.   Рассчитать нормированную АЧХ контура, построить её в том же частотном масштабе, что и спектрограммы, расположив их друг под другом.

5.   Рассчитать индуктивность и полосу пропускания контура.

Исходные данные :

U0= -3,5 B, Um=3 B, f1=2 МГц C=120 пФ, P=0,2

 
 Примечание: при расчётах  положить равным 12 В.


Рисунок 2.1 - Схема удвоителя частоты.

 

Решение:

1.         По значениям, приведенным в таблице 3, построим ВАХ полевого транзистора. Изобразим временные диаграммы входного напряжения:

U(t)=U0+Um*cos(wt) (2.1)

 

 

Рисунок 2.2 -

а) сток-затворная характеристика транзистора.

б) ток стока.

в) входное напряжение транзистора.

2.    Коэффициенты  определим, используя метод узловых точек. Выберем три точки (Напряжения соответственно равные ), в которых аппроксимирующий полином совпадает с заданной характеристикой:

u 1 = - 3,5В u 2= -0,5В u3=--7,5В

Затем, подставляя в полином значения тока, взятые из таблицы 3 и напряжения, соответствующие этим точкам, получают три уравнения.

(2.2)

Решая систему уравнений (2.2), используя [3], с помощью процедуры Given-Minerr , определим искомые коэффициенты полинома :

a0= 8,25 мА ; a1= 2,2 мА/В a2= 0,26 мА/В2

Проведем расчёт аппроксимирующей характеристики в рабочем диапазоне напряжений по формуле:

(2.3)

 

3. Спектр тока стока рассчитаем с использованием метода кратного аргумента [2] . Для этого входное напряжение подставим в аппроксимирующий полином и приведем результат к виду:

, (2.4)

где - постоянная составляющая; - амплитуды первой и второй гармоник соответственно;.После подстановки входного напряжения в полином, получим:

(2.5)  (2.6)

(2.7)

Подставляя числовые значения коэффициентов a0, a1, a3 и амплитудное значение входного сигнала Um, получим :

I0= 9.45 I1=6.6 I2=1.2

Изобразим спектр тока стока на рисунке 2.4, используя [3]:

Рисунок 2.3 – Спектр тока стока

Рассчитаем cпектр выходного напряжения, которое создаётся током (2.4).Он будет содержать постоянную составляющую  и две гармоники с амплитудами  и начальными фазами  и

, (2.8)

где - определим по формулам:

; (2.9)

;  (2.10)

, (2.11)

где - напряжение источника питания;

- сопротивление катушки индуктивности;

- характеристическое сопротивление контура;  - резонансная частота; - номер гармоники ().

 Подставив числовые значения для f1, Ec=12, I0, Q, C, r и рассчитав промежуточные значения:

r= 331,573 Ом , r = 5,526 Ом; R0 = 19890 Oм; Fр =4МГц;

рассчитаем спектр выходного напряжения с помощью [3]:

U0 =11,99 В, U1 = 0.058 В , U2= 0.955 В.

Изобразим спектр амплитуд и фаз выходного напряжения на рисунке 2.5:

Рисунок 2.4 – Спектр амплитуд и фаз выходного напряжения

Определим коэффициент нелинейных искажений выходного напряжения по следующей формуле:

4. Найдем- нормированную амплитудно-частотную характеристику контура, которую рассчитаем по формуле:

(2.12)

Изобразим нормированную амплитудно-частотную и фазо-частотную характеристики контура на рисунке 2.6, используя [3]:

Рисунок 2.5 - Амплитудно-частотная и фазо-частотная характеристики контура

5. Используя формулу [1] для индуктивности контура:

L=r/2*p*fp, (2.13)

найдём индуктивность контура L= 520.8 мкГн.

Графическим способом на уровне 0.707 определяем полосу пропускания, которая равна Df= 1,3105 кГц.


Задание 3

 

Условие:

На вход амплитудного детектора вещательного приёмника, содержащего диод с внутренним сопротивлением в открытом состоянии  и - фильтр, подаётся амплитудно-модулированный сигнал  и узкополосный шум с равномерным энергетическим спектром  в полосе частот, равной полосе пропускания тракта промежуточной частоты приёмника и дисперсией .

Требуется:

1.   Привести схему детектора и определить ёмкость  фильтра нижних частот.

2.   Рассчитать дисперсию входного шума и амплитуду несущего колебания .

3.   Определить отношение сигнал/помеха на входе и выходе детектора (по мощности) в отсутствии модуляции.

4.   Рассчитать постоянную составляющую и амплитуду переменной составляющей выходного сигнала.

5.   Построить на одном рисунке ВАХ диода, полагая напряжение отсечки равным нулю, а также временные диаграммы выходного напряжения, тока диода и напряжения на диоде.

Исходные данные приведены ниже:

R1=20 Ом ; R=10 кОм ; M=30% ; W0=4.6  

Решение:

1. На рис.3.1 изобразим схему детектора:



Рисунок 3.1 - Схема детектора.

 

Постоянную времени фильтра детектора выберем из условия

, (3.1)

где - частота несущего колебания;

- максимальная частота в спектре модулирующего сигнала.

Для того чтобы удовлетворить условию (3.1) следует выберем  как среднее геометрическое

. (3.2)

где кГц (промежуточная частота),

кГц.

Рассчитав  по формуле (3.2),находим, что =4 мкс .Далее определим ёмкость фильтра  по формуле:

. (3.3)

Расчет производим в [M] и находим ,что C= 0,4 нФ.


Информация о работе «Сигналы и процессы в радиотехнике (СиПРТ)»
Раздел: Коммуникации и связь
Количество знаков с пробелами: 26014
Количество таблиц: 1
Количество изображений: 34

0 комментариев


Наверх