2. Определим критические коэффициенты включения индуктивности. Для этого проведем в (4.8) некоторые преобразования.

Поскольку индуктивность  не отрицательна и не равна 0, то разделим (4.8) на нее.

. (4.9)

Введем величину коэффициента включения индуктивности р:

. (4.10)

Где  - полная индуктивность контура.  (4.11)

Исходя из (4.10) и (4.11) можно записать:

. (4.12)

Подставим (4.12) в (4.9).

. (4.13)

Как известно  - характеристическое сопротивление контура. Т.о. неравенство (4.13) примет вид:

. (4.14)

Разделив (4.14) на  получим:

, (4.15)

но  это есть добротность контура Q.

. (4.16)

Теперь если учесть, что  (4.15), а затем умножить неравенство на , получим окончательное уравнение для вычисления критических коэффициентов включения.

. (4.17)

Используя [3] определим критический коэффициент включения индуктивности:

3. Рассчитаем неизвестный элемент контура (в нашем случае это индуктивность) по следующей формуле:

 (4.18)

Подставив исходные данные, получим:

Определим коэффициент усиления усилителя:

Найдём значения индуктивностей L1 и L2 при помощи [3], используя операцию Given:

4. Представим качественный график процесса установления колебаний в автогенераторе (рисунок 4.3):

Рисунок 4.3 – Процесс установления автоколебаний:

1.     Нестационарный режим – режим, при котором параметры колебания меняются.

2. Стационарный режим – режим, при котором параметры колебания не меняются.


Задание №5.

 

Условие:

Аналоговый сигнал S(t) (рисунок 5.1) длительностью  подвергнут дискретизации путем умножения на последовательность  - импульсов. Интервал дискретизации Т.

Требуется:

1.     Рассчитать спектр аналогового сигнала S(t) и построить график модуля спектральной плотности.

2.     Определить максимальную частоту в спектре аналогового сигнала , ограничив спектр, использовав один из критериев.

3.     Рассчитать интервал дискретизации Т и количество выборок N. Изобразить дискретный сигнал под аналоговым в том же временном масштабе.

4.     Определить спектральную плотность дискретного сигнала и построить график модуля под графиком спектра аналогового сигнала и в том же частотном масштабе.

5.     Провести дискретное преобразование Фурье (ДПФ), определить коэффициенты ДПФ и построить спектрограмму модуля этих коэффициентов под графиками спектров аналогового и дискретного сигналов и в том же частотном масштабе.

Записать выражение для Z - преобразования дискретного сигнала.

Решение:

Рисунок 5.1 – график исходного сигнала

1.Рассчитаем спектр аналогового сигнала S(t), данный сигнал представляет собой ни четную ни нечетную функцию. Зададим сигнал S(t) аналитически:

(5.1)

Спектральная плотность рассчитывается путем прямого преобразования Фурье [7]:

. (5.2)

где  (5.3)

 

Где и весовые коэффициенты. Подставляя значения с помощью [3] построим график спектральной плотности (рисунок 5.2).

Рисунок 5.2 – график модуля спектральной плотности


Информация о работе «Сигналы и процессы в радиотехнике (СиПРТ)»
Раздел: Коммуникации и связь
Количество знаков с пробелами: 26014
Количество таблиц: 1
Количество изображений: 34

0 комментариев


Наверх