2. Определим максимальную частоту в спектре аналогового сигнала по уровню 0,1.

(5.4) . (5.5)

3. Условие выбора интервала дискретизации возьмем из теоремы Котельникова :

.  (5.6)

Подставив значения, получим:

Воспользовавшись (5.6) выберем интервал дискретизации:

В этом случае количество выборок определяется следующим образом:

. (5.7)

N = 21;

Теперь, когда мы нашли интервал дискретизации и количество выборок построим график дискретного сигнала, а так же для сравнения в одном масштабе с ним график аналогового (рисунок 5.3):

Рисунок 5.3 – Графики: а) аналогового сигнала;

б) дискретного сигнала.

На рисунке 5.3 в величине выборок отражен весовой коэффициент δ - импульсов дискретизации.

4. Спектр дискретного сигнала, как известно, представляет собой сумму копий спектральных плоскостей исходного аналогового сигнала, подвергнутого дискретизации, сдвинутых на величину частоты следования выборок друг относительно друга [7].

Т. о. Формула спектральной плотности дискретного сигнала примет вид:

. (5.8)

Пользуясь (5.8) построим график при помощи [3]:

Рисунок 5.4 – а) модуль спектральной плотности аналогового сигнала; б) ограниченный спектр аналогового сигнала;

в) спектральная плотность дискретного сигнала;

5. Дискретное преобразование Фурье определяется формулой (5.9) [2]:

. (5.9)

Где:  - номер отсчета спектральной плотности; ;

 - номер отсчета дискретного сигнала; .

Т. о. по формуле (5.9) и при помощи [3] можно подсчитать значения дискретных отсчетов:

Зная, что выше вычисленные отсчеты следуют через интервалы , величина которых определяется следующим соотношением [2]:

, (5.10)

где: N – количество выборок дискретного сигнала;

Т – период дискретизации;

можно построить спектрограмму модулей этих коэффициентов.

Данную спектрограмму будем строить в одном частотном масштабе с графиками спектров аналогового и дискретного сигналов и расположив ее под ними.

Рисунок 5.5 – а) Спектр аналогового сигнала;

б) Спектральная плотность дискретного сигнала;

в) Спектрограмма модулей коэффициентов ДПФ.

6. Заменив в формуле (5.9)  на Z (в данном случае  играет роль частоты) прейдем к выражению для Z-преобразования.

.  (5.11)

Распишем (5.11) подробнее, при этом заметим, что как видно из рисунка 5.3 отсчеты с номерами от 0 до 8 равны 1, а 9 равен 0. С учетом всего сказанного получим:

. (5.12)

При помощи простых математических преобразований представим (5.12) в виде дробно-рационального выражения:

. (5.13)


Задание №6.

Условие:

Уравнения цифровой фильтрации имеют вид:

(6.1)

Требуется:

1. Составить структурную схему фильтра.

2. Найти передаточную функцию фильтра. Определить полюса передаточной функции и нанести их на - плоскости. Сделать вывод об устойчивости.

3. Рассчитать и построить АЧХ и ФЧХ фильтра.

4. Найти системную функцию фильтра. Определить полюса системной функции и нанести их на - плоскости. Сделать вывод об устойчивости.


Информация о работе «Сигналы и процессы в радиотехнике (СиПРТ)»
Раздел: Коммуникации и связь
Количество знаков с пробелами: 26014
Количество таблиц: 1
Количество изображений: 34

0 комментариев


Наверх