Задержки вызова услуги в телефонной сети г.Кокшетау

Организация интеллектуальной сети в г. Кокшетау на базе платформы оборудования Alcatel S12
Характеристика сети телекоммуникаций г.Кокшетау Концептуальные основы интеллектуальных сетей Новые услуги электросвязи Сравнение возможностей оборудования различных производителей Построение ИС на базе оборудования Alcatel 1000 S12 Обоснование выбора оборудования для создания интеллектуальной сети Стандартизация концепции ИС Прикладной протокол INAP и интерфейсы ИС Интерфейсы ИС Программное обеспечение ИС и создание интеллектуальных услуг Реализация ИС на базе оборудования Alcatel 1000 S12 Узел SMP платформы IN Alcatel Распределение нагрузок при обслуживании вызовов к ИСС Расчет временных характеристик интеллектуальных сетей Задержки вызова услуги в телефонной сети г.Кокшетау Задержка сообщений в канале ОКС №7 при передаче от SSP к SCP Задержка обработки запросов на интеллектуальную услугу в вычислительной системе SCP Выбор производительности процессорной системы SCP Программный расчет Система защиты интеллектуальной сети. Угрозы и решения Потенциальные угрозы Требования к системе защиты Услуги и механизмы работы системы защиты Вопросы по электробезопасности Производственное освещение Охрана окружающей среды на предприятиях связи Общие положения Доходы от основной деятельности Прибыль от реализации услуг
260457
знаков
20
таблиц
40
изображений

6.2 Задержки вызова услуги в телефонной сети г.Кокшетау

Рассматриваемая телефонная сеть г.Кокшетау содержат лишь одну станцию, с функциональными возможностями SSP. Информация о вызове ИУ поступает от всех станций на SSP по заранее установленным маршрутам. На рисунке 6.1 показан фрагмент такой сети в виде дерева, в узлах которого расположены телефонные станции (ТС), а ветви соответствуют основным маршрутам прохождения сигнальных сообщений от ТС к SSP. Здесь не показаны обходные маршруты передачи сигнальных сообщений.

Считаем, что SSP расположен в станции, соответствующей корневому узлу Y0. Все остальные узлы Yi (i#0) являются концевыми, то есть каждый из них создает абонентскую нагрузку вызова ИУ.

Обозначим через  - среднее число заявок на ИУ, поступающие в ЧНН от одного телефонного абонентского номера в единицу времени, Ni - число абонентских номеров для i-и ТС [7].

В том случае, среднее число вызовов ИУ от каждой из станций в ЧНН:

0 * Ni(6.2)

Суммарная интенсивность поступления вызовов на SSP от всех ТС:

 (6.3)

где М- общее число ТС, подключенных к SSP.


Рисунок 6.1 - Дерево маршрутов от телефонных станций к SSP

Обозначим через Vij- ветвь, соединяющую узлы Yi и Yj сети. Обозначим также участок сети, включающий в себя все ветви маршрута от узла Yi к корневому узлу - через Bi. На рисунке 6.2, например, для узла Y4 такой маршрут В4 проходит через вершины 0, 1, 2, 3, 4 и включает ветви V01, V13, и V34.

Обозначим длину участка пути, соответствующего ветви Vij через Lij, а длину участка сети Bi, включающего все ветви маршрута от узла Yi к корневому узлу - через Li:

 (6.4)

Рисунок 6.2 - Маршрут от станции Y4 к SSP


В рассматриваемом случае, например

 (6.5)

 (6.6)

 (6.7)

Вероятность прохождения вызова ИУ по маршруту Bi пропорциональна интенсивности заявок, поступающих от i-й ТС:

 (6.8)

Средняя длина пути Lc по которому сигнальная информация о вызове ИУ поступает от ТС на SSP, определяется соотношением:

 (6.9)

Аналогично, определяется и среднее число ТС, через которые должна пройти сигнальная информация, следующая по маршруту Bi:

 (6.10)

где Мi - число ТС, принадлежащих маршруту Вi. Если принять скорость распространения сигнала на линейном участке сети Vc, то средняя задержка времени распространения сигнала в линиях сети:

 (6.11)


При поступлении запроса от абонента на станцию, а также, при прохождении этого запроса через все транзитные ТС, в каждой из них возникают временные задержки. Примем эти задержки для всех ТС одинаковыми, и обозначим их через ст.

Средняя суммарная задержка сообщений при прохождении их через ТС сети:

 (6.12)

Итак, с точки зрения временных задержек, разветвленная сеть условно может быть заменена эквивалентным неразветвленным звеном, характеризующимся средней задержкой времени распространения сигнала в линиях и средней суммарной задержкой сообщений в станциях сети [6].

6.3 Задержка на участке SSP-SCP

Взаимодействие SSP и SCP по оказанию ИУ начинается с момента поступления на станцию, содержащую SSP, последней цифры набора кода и номера услуги. SSP осуществляет анализ полученной информации, инициирует запрос услуги в виде сообщения IDP и передает его посредством протокола INAP в виде команды ТС-BEGIN по каналу ОКС №7 [19].

Сообщение, полученное SCP, анализируется, обрабатывается компьютерами, в результате чего SSP получает ответ из SCP, в котором содержится информация о том, как произвести услугу. В общем случае, подобный диалог может состоять из нескольких транзакций, т.е. из нескольких циклов запрос-ответ, обеспечивающих выполнение требуемой услуги. На рисунке 6.3 представлен диалог, содержащий две транзакции. Короткими стрелками показаны другие сообщения, циркулирующие в дуплексном канале ОКС №7 и не относящиеся к данной транзакции. Это могут быть либо сообщения других транзакций, либо служебные сигнальные единицы (СЕ), либо «пустые» СЕ, обеспечивающие синхронизацию работы канала ОКС №7 [7].

После получения сообщения BEGIN, инициирующего запрос на интеллектуальную услугу, SCP обрабатывает указанный запрос и, спустя некоторый промежуток времени, выдает в сторону SSP сообщение CONTINUE и другую информацию, необходимую для осуществления коммутации и обслуживания запрошенной услуги. После получения указанной информации, SSP сообщением END информирует SCP об окончании обмена, a SCP сообщением DEND подтверждает отсутствие ошибок и согласие на завершение обмена [9].

Рисунок 6.3 - Диалог между SSP и SCP через сеть ОКС-7

Временная задержка на участке SSP-SCP обусловлена задержками, связанными с передачей сообщений в обоих направлениях, а также существенно зависит от времени обработки запроса вычислительной системой SCP. Именно стремлением уменьшить среднее время задержки обработки сообщений, обусловлено выполнение вычислительной системы SCP в многопроцессорном виде [10].

Сообщения о вызываемой услуге, поступающие от телефонной сети на SSP, прежде, чем будут переданы в звено ОКС №7, анализируются вычислительными средствами SSP. Проанализированные сообщения могут образовывать очереди, ожидающие освобождения канала ОКС №7 в сторону SCP. После передачи сообщений по звену ОКС №7 от SSP к SCP, перед поступлением на обработку, они могут также образовывать очереди, ожидающие освобождения процессоров SCP. Наконец, результаты обработки запроса услуги, перед их передачей в обратном направлении - из SCP в SSP, могут также образовывать очереди, ожидающие освобождения звена ОКС №7 [16].

Поскольку все сообщения возникают в случайные моменты времени, процесс их обработки и передачи рассматривается как процесс массового обслуживания, а вычислительные системы SSP и SCP, а также канал ОКС №7 - как некоторые системы массового обслуживания (СМО).

Информация, поступающая в SSP в результате осуществления каждой транзакции, анализируется процессорной системой SSP в течение некоторого среднего промежутка времени tssp. Так же, как и в случае SCP, указанный промежуток времени включает в себя не только время собственного анализа, но также и время ожидания в очередях SSP.

В отличие от SCP, задержки в очередях SSP практически мало зависят от интенсивности  запросов на интеллектуальные услуги, поскольку эти задержки определяются общим трафиком АТС, на которой реализованы функции SSP.



Информация о работе «Организация интеллектуальной сети в г. Кокшетау на базе платформы оборудования Alcatel S12»
Раздел: Коммуникации и связь
Количество знаков с пробелами: 260457
Количество таблиц: 20
Количество изображений: 40

0 комментариев


Наверх