3.9.1 РАСЧЕТ СВОБОДНОГО ХОДА ПОРШНЯ ЦИЛИНДРА ПРИ ТОРМОЖЕНИИ ВАГОНА
Определим влияние величины зазора ∆ между колодкой и колесом на выход штока LCB поршня ТЦ. Рассмотрим только головную кинематическую цепь ТРП. Тыловая кинематическая цепь передачи тормоза, расположенная на вагоне со стороны задней крышки ТЦ по всей структуре идентична головной и имеет обозначения соединений подвижных звеньев 1 – 9.
Свободный ход поршня ТЦ найдем из условий перемещения шарниров 1- 9 и 1’ – 9’ собирающих элементы рычажного механизма в единые кинематические цепи. Для этого воспользуемся подобием треугольников, образованных в структуре механизма изначальным и конечным местоположением рычагов передачи (рис. 3.7.)
Рис. 3.7.Свободный ход поршня Т.Ц. при торможении вагона за счет перемещения колодок до прилегания к колесам.
С учетом полученных результатов полную величину свободного хода поршня Т. Ц. можно выразить:
- зазор между колодкой и колесом; = 8мм.
для чугунных колодок:
для композиционных колодок:
Приращение выхода штока от износа тормозных колодок определяется
- износ тормозных колодок; по данным ВНИИЖТа:
, следовательно
, для чугунных тормозных колодок.
3.9.2 РАСЧЕТ ДОПОЛНИТЕЛЬНОГО ХОДА ШТОКА ЦИЛИНДРА ПРИ ТОРМОЖЕНИИ ВАГОНА
После прилегания всех колодок к колесам с увеличением давления воздуха в ТЦ колодки прижимаются с большим усилием, а поршень цилиндра, как указывалось выше, сделает дополнительный ход Lдоп, величина которого зависит от давления воздуха в ТЦ, деформации всех элементов ТРП и ее передаточного числа.
Под действием тормозных усилий рычаги передачи подвергаются деформациям изгиба, тяги и другие продольные элементы - растяжению или сжатию. Криволинейной формы затяжки или распорки рычагов испытывают внецентренное, растяжение. Деформируют также триангели и траверсы в направлении воздействующих на них усилий.
Схема для определения влияния упругих деформаций ТРП на величину хода поршня ТЦ в 4-х осном грузовом вагоне показана на рис 3.8.Искомое приращение хода штока ТЦ найдем в указанной схеме из условий перемещений шарниров 2-11, соединяющих между собой в кинематические цени элементы рычажного механизма.
Рис. 3.8.
Для этого воспользуемся подобием треугольников, образованных в структуре механизма изначальным и конечным местоположением рычагов передачи, обусловленным деформациями в ТРП.
Деформации:
D1 – триангеля;
D2 – изгиба вертикального рычага тележки;
D3 – сжатие затяжки вертикальных рычагов;
D4 – растяжение тяги вагона;
D5 – изгиба горизонтального рычага ТЦ;
D6 – растяжение затяжки горизонтальных рычагов;
3.9.3Вычисление величин деформаций элементов РП при торможении вагона
Деформация вертикального рычага тележки:
Упругие деформации элементов Р.П., работающих на растяжение и сжатие определяются по:
, где
Р – сила действующая в рассматриваемом сечении, Н.
l – длины рассматриваемых элементов, см,
F – площадь поперечного сечения, см2
Е – модуль упругости, Н/ см2
В случае внутреннего растяжения (сжатия) формула примет вид:
е – эксцентриситет приложения силы;
I– момент инерции сечения.
Деформация сжатия затяжки вертикальных рычагов:
где l – длина затяжки, l=119,5 см;
F – площадь поперечного сечения, F=18.75 см2.
Деформация растяжения тяги вагона:
F=3,8 см2; lдл=2910 мм; lкор=523 мм;
Деформация горизонтального рычага:
t*(h3-d23) 14(1403 – 453)
I= ¾¾¾¾¾¾ = ¾¾¾¾¾¾¾ = 3095021мм3
12 12
Деформация затяжки горизонтальных рычагов (внецентренное
растяжение):
где e – эксцентриситет, е = 65мм;
I – момент инерции сечения пластины.
I=t*h3/12= 25*1103/12=2772917мм4
F= t*h=25*110=2750; l=1070мм;
Деформация триангеля:
D1= [4,5*(L- а)2*Р]/3I1+2*l1*P/6I2*[(L-а)*4,5-L*0,8-((L-
f)/2)*0,8+4,5*L12)
Принимаем деформацию прогиба триангеля в процессе торможения 2 мм.
Определяем величину выхода штока от упругих деформаций.
По технологическим требованиям на проектирование ТРП вагона выход штока ТЦ от упругих деформаций не должен превышать 25% (<60мм) выхода штока при ПСТ или при 1-ой ступени торможения.
3.10.Приращение хода поршня Т. Ц. от сжатия возвратной пружины регулятора
РисЗ.9Приращение хода поршня тормозного цилиндра в зависимости от величины сжатия пружины АРП
Поршень ТЦ совершает дополнительный ход в процессе торможения вагона за :чет возвратной пружины регулятора рычажной передачи. На рис. 3.9 приведена расчетная схема узла ТЦ 1 вагона для определения приращения хода его поршня от сжатия возвратной пружины 3 в регуляторе 2 при торможении.
При воздействии привода 4 на корпус регулятора 2.Под действием растягивающих усилий, развиваемых поршнем ТЦ 1 в процессе торможения, происходит сжатие тяговым стержнем 7 возвратной пружины 3 регулятора на величину АР (см Рис.3.9), что обуславливает поворот головного горизонтального рычага 5 и приращения хода поршня цилиндра. Зависимость перемещения поршня ТЦ и величины сжатия Dр возвратной пружины 3 установим; на основе подобия треугольников f1f0 и t1t0 откуда следует:
полная величина выхода штока:
... восстановительный ремонт деталей и узлов вагона, таких как кассетные роликовые подшипники, автосцепка, поглощающие аппараты и др. Проблема полного и своевременного обеспечения перевозок грузовыми вагонами нового поколения выдвигается сегодня в число наиболее злободневных и первоочередных. Концепция трехэлементных тележек с дополнительными межосевыми связями была разработана Г.Шеффелем. Идея ...
0 комментариев