20. Подобие гидродинамических явлений

Решение системы Навье-Стокса даже для простых задач представляет значительную сложность, поэтому большое значение приобретает гидродинамический эксперимент, вопросы моделирования процесса. При моделировании необходимо учитывать влияние большого количества факторов на протекание процесса, чтобы полученные результаты на моделях можно было переносить на действующие образцы. Эту сложность в значительной степени позволяет устранить теория подобия, которая утверждает, что влияние отдельных факторов можно рассматривать в совокупности объединяя их в безразмерные комплексы – критерии подобия. Эти критерии получаются путем перевода размерных уравнений движения в безразмерные. Все критерии имеют определенный физический смысл. Анализ задачи приобретает следующие особенности: 1) уменьшается число переменных, т.к. количество критериев всегда меньше количества образующих их величин; 2) ярче выделяются физические особенности рассматриваемой задачи; 3)анализ приобретает обобщенный характер, т.к. одно и то же значение комплекса может быть получено путем бесконечного варьирования образующих величин.

Гидродинамические явления будут подобными если течения протекают в геометрически подобных системах. Наблюдается подобие полей скоростей и других важных физических характеристик. Константы пропорциональности называются константами подобия.

Выясним условия, при которых течения описываемые системой Навье-Стокса будут подобными. По геометрическим условиям однозначности должен быть задан какой-то характерный линейный размер:

1) ; 2) по физическим условиям однозначности должны быть определены ; 3) по граничным условиям должна быть определена ; 4) по начальным условиям задано характерное время , например период определяющий темп внешних воздействий

Таким образом в уравнениях зависимые переменные определяются как функции независимых переменных x, y, z, t и параметров задающих условие однозначности

Приведем уравнение движения к безразмерному виду методом масштабных преобразований. Будем относить физические величины к одномерным параметрам

; ;

В качестве масштаба для массовых сил примем ускорение свободного падения.

; ; ;

Выразим размерные величины через их масштабы в Уравнении Навье-Стокса:

Аналогично могут быть получены составляющие системы уравнений вдоль оси у и z.

Уравнение сплошности после приведения к безразмерному виду не изменится. После приведения уравнения движения к безразмерному виду появились безразмерные комплексы.

 - критерий динамической гомохронности;

 - критерий Фруда;

 - число Эйлера;  - критерий Рейнольдса.

После приведения уравнений к безразмерному виду изменился их физический смысл, т.к. один и тот же вид уравнений с подобными условиями будут соответствовать не единственному условию, а целой группе подобных явлений. В соответствии с теоремой подобия Кирпичева-Гухмана гидродинамические явления будут подобными если они: 1) описываются одной системой дифуравнений; 2) имеют подобные условия однозначности; 3) имеют численно равные критерии подобия


21. Критериальные уравнения. Критерии и числа подобия

После приведения уравнения Навье-Стокса к следующему виду они стали содержать следующие типы переменных: 1) безразмерные независимые переменные ; 2) безразмерные зависимые переменные ; 3) безразмерные критерии – комплексы, состоящие из величин заданных по условиям однозначности .

После приведения к безразмерному уравнению изменился характер уравнений. Уравнения приобрели обобщенный вид, т.к. одно и то же значение любого критерия может быть получено путем бесконечного варьирования входящих величин. Уравнения могут быть записаны в виде:

  

- система обобщенных или критериальных уравнений

Критерии подобия могут быть двух видов: 1) состоящие из разноименных параметров; 2) имеющие периодический вид, т.к. представляют собой отношение одноименных параметров. Пример: для труб:

.

Относительные переменные также могут быть двух видов:

1) отношение переменной к одноименной величине, заданной по условию однозначности:


2) если по условию однозначности нельзя задать одноименную величину, то строится комплекс приводящий величину к безразмерному виду – число подобия:

В числа подобия входят определяемая величина. Критерий подобия состоит из заранее известных величин, заданных по условиям однозначности..

1) Критерий Рейнольдса  - определяет соотношение сил инерции и вязкости в однородном потоке. Это важнейший гидродинамический критерий для вынужденного движения. При движении потока в нем возникают возмущения, которые исходят от стенок канала или вносятся в поток извне. Влияние возмущений зависит от соотношения сил. Если преобладают силы вязкости возмущения гаснут и поток не меняет своей структуры. Если преобладают силы инерции возмущения развиваются дальше, поток меняет течение, изменяется его структура. Граница соотношения сил определяется по значению Reкр. Если Re<Reкр преобладают вязкие силы, Re>Reкр – силы инерции. Re характеризует движение при соизмеримости инерции и вязкости. Если в потоке преобладает какой-то один вид сил характер перестает зависеть от величины Re. В этом случае говорят, что течение автомодельно относительно критерия Re.

2) Критерий гидродинамической гомохронности  - определяет соотношение между периодом темпа внешних воздействий на поток и периодом перестройки скоростного поля. Используют только для нестационарных задач. - время, за которое проходит частица, движущаяся со скоростью V0, путь l0. Если в задаче время подлежит определению, то рассматривается не критерий, а число Струхала:

3) Критерий Фруда  - определяет соотношение между силами инерции и тяжести в потоке. Используется только в задачах, в которых гравитационные эффекты имеют важное значение. Однако в таких задачах часто сложно задать характерную скорость (при естественной конвекции), поэтому строится критерий, в котором исключается скорость:

 - критерий Галилея.

При гравитационном движении важное значение имеет параметрический критерий: .

Причем ρ и ρ0 – плотности не только в разных точках, но и в различных фазах.  - критерий Архимеда.

При гравитационном течении однофазной жидкости движение возникает в результате расширения:

* - коэффициент объемного расширения.

 - критерий Гросгофа.

4) Число Эйлера  - определяет соотношение сил давления и сил инерции; определяемая величина; т.к. часто давление в потоке неизвестно, то больший интерес представляет определение перепада давления на рассматриваемом участке .


 - безразмерный коэффициент сопротивления при очень низких скоростях, когда течение ламинарное , , в этих случаях рассматривают число Лагранжа, которое принимает постоянное значение:


Информация о работе «Основы гидрогазодинамики»
Раздел: Физика
Количество знаков с пробелами: 42494
Количество таблиц: 0
Количество изображений: 14

Похожие работы

Скачать
11697
4
4

астке СD – 1 шт.,  на участке DE – 1 шт.; Рис. 1.1. Схема водоснабжения ПУ: Н – насос, ПУ – промышленные установки 3)    Напор у потребителя, независимый от потерь напора в трубопроводе ( свободный  напор) - ; 4)    число часов работы установки в сутки - ; 5)    число дней работы установки в году  -  дней.2.   Теоретическая часть   По способам ...

Скачать
44345
0
0

... переключения с акустического анализа на прочностной. ProCAST(UES, CALCOM) Согласно исследованиям , проведенными экспертами NASA, ProCAST признана наиболее мощной и корректной программой для расчета литейных процессов. ProCAST позволяет инженеру-проектировщику рассчитывать и визуализировать в трехмерной постановке процесс течения и отверждения металла в форме, предсказывать микроструктуру, ...

Скачать
41586
0
10

... времени на коммуникации) Заметим, что алгоритм EVAH имеет большое преимущество перед традиционными алгоритмами на неориентированных графах именно в силу возможной обработки ориентированного графа. Для многоблочных задач объем коммуникации между соседними блоками не всегда симметричный. Алгоритм EVAH учитывает время на коммуникации, но не пытается распределить блоки на несколько процессоров, ...

Скачать
45377
1
7

... результаты разработки нефтегазовых и газоконденсатнонефтяных залежей приведены в [47-53]. 2. Моделирование процессов статического конусообразования при разработке нефтегазовых и газоконденсатнонефтяных залежей 2.1 Сущность проблемы конусообразования Большинство нефтяных, газоконденсатнонефтяных, нефтегазовых и газовых залежей, разрабатываемых в настоящее время, подстилаются частично или ...

0 комментариев


Наверх