4.1.2 Основные потери обмотки ВН, Вт,
Росн ВН = 2,4нн . Мм вн
Мм вн = 28 . 3 . . 178 . 235,2 . 10-5 = 2310,48 кг
Росн вн = 2,4 . 0,62. 2310,48 = 1996,25 Вт.
4.1.3 Добавочные потери в обмотке НН,
Кд нн = 1+ 0,095д2 . а4. (h2 -0,2),
Где д= bm Кр / Но
b –размер проводника, парралельный направлению линий магнитной индукции осевой составляющей поля рассеивания,
m – число проводников в обмотке,
Кр –коэффициент приведения поля рассеяния, Кр = 0,95
= 0,22
а – размер проводника, перпендикулярный направлению линии магнитной индукции осевой составляющей поля рассеяния,
n – число проводников обмотки,
Кд.нн = 1+ 0,095 . 0,222. 0,454(3 – 0,2) = 1,001.
Рис.4 а- к расчету массы обмоток; б – к определению добавочных потерь в обмотках.
4.1.4 Добавочные потери в обмотке ВН
Кд вн = 1 + 0,044 .д12 . d4 . n2,
Где = bm .Кр /Но, d – диаметр проводника;
д1 = 14 . 5. 0,95 / 73,27 = 0,26
Кд вн =1 + 0,044 . 0,262. 5,64 . 32 = 2,74
4.1.5 Длинна отводов для схемы соединения «звезда» ВН и НН имеют одинаковую длину, см,
lотв.ВН = lотв.НН = 7,5Но = 7,5 . 73,27 = 549,5 см
4.1.6 Масса отводов НН,кг,
Мотв.НН = м . Пв.НН . lотв.НН . 10-8,
Где - плотность металла отводов,
м = 8900 кг/м3
Мотв.НН = 8900 . 226,92 . 549,5 . 10-8 = 11,09 кг
4.1.7 Потери в проводах НН, Вт,
Ротв.НН = 2,4 . Мотв.НН = 2,4 . 2,82 . 11,09 =208,67 Вт
4.1.8 Масса отводов ВН, кг
Мотв.ВН = м. Пв.ВН . lотв.ВН. 10-8 = 8900. 235,2 . 11,09 . 10-8 = 0,23 кг
4.1.9 Потери в отводах ВН, Вт,
Ротв.ВН =2,4вн2. Мотв.ВН = 2,4 . 2,82 . 0,23 = 4,3 Вт
4.1.10 Потери в стенках бака и других элементах конструкции, Вт
Р = 10 .К . S,
Где К - принимаем К = 0,015
S – полная мощность трансформатора, кВА,
Р= 10 . 0,015 . 750 = 112,5 Вт.
4.1.11 Полные потери короткого замыкания, Вт,
Рк = КдНН . Росн.НН + КдВН. Росн.ВН + Ротв.ВН + Ротв.НН + Р =
= 1,001 . 4654,14 + 1996, . 2,74 + 208,67 + 4,3 +112,5 10453,98 Вт
или 1098 . 100% / 600 = 174,2%
4.2 Расчет напряжения короткого замыкания
Рис.5 Поле рассеяния двух концентрических обмоток: 1- обмотка ВН; 2- обмотка НН; 3- ярмо; 4- стержень; 5- поток рассеяния.
4.2.1 Расчет активной составляющей, %,
Uа = Рк / (10S) =10453,98 / 10 . 750 =1,39%
4.2.2 Расчет реактивной составляющей, %,
Uр = 7,92 . f . S| . ар . Кр . Кq. 10-3 / U,
Где = Д12 / Но
Д12 = Д//1 + а12 = 35,9 + 0,9 = 36,8 см
= 3,14 . 36,15 / 73,27 = 1,55
ар – ширина приведенного канала расстояния, см,
ар = 0,9 + = 11,65 см
Кq– коэффициент учета неравномерного распределения витков по высоте Кq = 1,
Кр – коэффициент, учитывающий отклонения реального поля рассеяния от идеального параллельного,
Кр 1-
= (а12 + а1 + а2) /Но == 0,14
Кр = 1- 0,14 = 0,86
Uр = = 16,13%
4.2.3 Напряжение короткого замыкания, %,
Рис.6 Продольное и поперечное поля в концентрических обмотках: 1и 2- обмотки внутренняя и наружна
Uк = = = 16,13% Или = 358,5 В
4.3 Расчет механических сил в обмотках
4.3.1 Установившейся ток короткого замыкания, А,
Iк.у. = Iном.ВН . 100 / Uк == 895,8 А
4.3.2 Мгновенное максимальное значение тока короткого замыкания,А,
iк.max = 1,44 . Kmax. Iкy,
где Kmax– коэффициент учитывающий периодическую составляющую тока КЗ.
Kmax = 1 + e -Ua \ Up = 1+ e -= 0,27
Iк.max = 1,41 . 0,27 . 895,8 = 341 А
... производится с помощью математического пакета “Mathcad” с последующим построением соответствующих графиков нагрузки трансформаторов (на сторонах 10, 35кВ) и графиков нагрузки подстанции в целом. По данным планового отдела Электрические сети ОАО “Костромаэнерго”, район, питающийся от подстанции “Рождественское”, находится в экономическом кризисе. В районе не развивается производство, подстанция ...
... частота тока Норм. вел. ПДУ, при t, с 0,01 - 0,08 свыше 1 Переменный f = 50 Гц UД IД 650 В — 36 В 6 мА Переменный f = 400 Гц UД IД 650 В — 36 В 6 мА Постоянный UД IД 650 В 40 В 15 мА Электрокотельное отделения, где установлены основное оборудование 6 кВ, относиться к классу особо опасных помещений по степени возможности поражения ...
... Масса масла в радиаторе - 328 кг Масса радиатора - 538 кг Теплоотдающая поверхность одного радиатора Fрад - 52 м2 Количество радиаторов охлаждения – 2 12. Описание конструкции трансформатора В конструктивном отношении современный силовой масляный трансформатор можно схематически представить состоящим из трёх основных систем – магнитной, системы обмоток с их изоляцией, системы охлаждения и ...
... : результаты, проблемы, пути решения С точки зрения снижения расхода электроэнергии на собственные нужды подстанций необходимо обратить внимание в первую очередь на оптимизацию работы системы охлаждения силовых трансформаторов, автотрансформаторов и шунтирующих реакторов. В настоящее время разработаны микропроцессорные устройства, способные в зависимости от температуры воздуха и температуры масла ...
0 комментариев