4. Расчёт керамического рекуператора.
Расход продуктов сгорания через рекуператор ; расход воздуха ; температура воздуха на входе и на выходе соответственно и ; температура продуктов сгорания на входе .
Тепловой поток через поверхность теплообмена:
где k – коэффициент теплоотдачи;
Dt – средне логарифмическая разность температур между воздухом и продуктами сгорания;
F – поверхность теплообмена.
Уравнение теплового баланса с учётом утечек воздуха
,
где h=0,95– коэффициент учёта потерь тепла в окружающую среду;
n=0,2 – доля утечки воздуха.
Из этого уравнения выражаем температуру продуктов сгорания на выходе из рекуператора:
где
- концентрация воздуха, =1,334 (кДж)/(м3×К).
По формуле получим .
Определение коэффициента теплопередачи от продуктов сгорания к воздуху.
Согласно рекомендации [4] скорость продуктов сгорания и скорость воздуха при нормальных условиях равны соответственно и .
Продукты сгорания движутся внутри рекуператорных труб.
4.1Определение коэффициента теплоотдачи продуктов сгорания.
Теплоотдача конвекцией.
Температура, средняя по длине поверхности теплообмена:
.
Число Рейнольдса:
,
где -скорость продуктов сгорания при 957,5°С;
n-коэффициент кинематической вязкости при 957,5 °С;
dЭ–характерный геометрический параметр пространства, в котором происходит движение продуктов сгорания. При движении внутри рекуператорных труб dЭ = 0.144 м.
Коэффициент теплоотдачи конвекцией по рис.2.2[4]:
,
Теплоотдача излучением.
Средняя температура стенки для входа по продуктам сгорания:
.
Средняя температура стенки для выхода по продуктам сгорания:
.
В рекуператоре прямоточное движение сред.
Эффективная длина луча:
.
Эффективная степень черноты стенок труб рекуператора:
,
где eСТ=0,8 – степень черноты шамотного огнеупора.
Парциальные давления газов численно равны их объёмным содержаниям: .
Произведения парциальных давлений на эффективную длину луча:
.
Степени черноты газов определяем по графикам [4]:
1. Для входа, при 1000 °С: ;
2. Для выхода, при 915 °С: ;
3. Поправочный коэффициент: .
Значения коэффициента теплоотдачи:
1. Вход:
2. Выход:
Средний коэффициент теплоотдачи излучением:
.
Суммарный коэффициент теплоотдачи:
.
Определение коэффициента теплоотдачи воздуха.
Коэффициент теплоотдачи aВ=f(wB,O;tB) при tB=0,5×( + )=237°С по рис.2.4[4]:
.
Средняя температура стенки:
.
Теплопроводность стенки при 597°С:
.
Толщина стенки трубы: .
Коэффициент теплопередачи:
.
... площади пода печей определяют не через время нагрева, а используя величину напряжённости активного пода На. В этом случае Fа = Р/На, а длина печи La = Fa/B, где В – ширина печи. 4 Печи для термической обработки сортового проката. 4.1 Режимы термической обработки. Наиболее распространённым видом термической обработки сортового проката является отжиг с целью проведения полной фазовой ...
... температури, що знаходяться на рівні температури займання палива і нижче. Тому для забезпечення стабільної роботи пальників їх треба оснащати запальниками (частіше електричними). По-друге, в камерній термічної печі сильно змінюється (в 10-20 і більше разів) теплова потужність і, відповідно, витрата палива. В період нагріву потужність максимальна, а в період витримки може впасти до нуля. Стандартн ...
... мартеновской плавки. От интенсивности передачи тепла твердой шихте или жидкой ванне зависит скорость нагрева и плавления шихтовых материалов и качество работы мартеновской печи в целом. Большая часть различных мер (совершенствование конструкции головок и печи в целом, организация факела и режима завалки и т. д.) направлена на то, чтобы создать условия, при которых максимум подведенного тепла в ...
... большого конуса с воронкой, перекрывающего колошник печи, и малого конуса с вращающейся приемной воронкой. Такая конструкция засыпного аппарата позволяет равномерно распределять материал на окружности колошника и устраняет потери газов в атмосферу. Загрузку шихты в доменную печь осуществляют послойно. Процесс развития доменного производства идет в направлении повышения содержания железа в рудном ...
0 комментариев