5. Выбор горелочных устройств.
Для данной методической печи используем горелки типа “труба в трубе”.
Примем следующее распределение тепла по зонам печи [8]:
- томильная зона – 15%;
- первая сварочная зона:
- верхняя – 20%;
- нижняя – 22,5%;
- вторая сварочная зона:
- верхняя – 20%;
- нижняя – 22,5%.
Число горелок в каждой зоне:
где Sг – шаг горелок [8], м;
k – число рядов горелок.
Пропускная способность одной горелки по газу:
.
Давление газа перед горелкой принимаем 4 кПа, для воздуха – 0,5 кПа.
Первая сварочная зона.
Теплота сгорания топлива: QHP=8095,6 кДж/м3.
Газ холодный (20°С): rГО=1,194 кг/м3.
Температура подогрева воздуха: tВ=454°С.
Удельный расход воздуха: VВ=2,1021 м3/м3.
Расход воздуха на горелку:
Расчётный расход воздуха при подогреве его до 454оС:
где k =1,56 – коэффициент определяется по рис.5а [8].
По рис.5а [8], по расчётному расходу воздуха и давлению перед горелкой 0,5 кПа определяем тип горелок: ДНБ-275/dГ.
Расчётный расход газа:
где kt – определяется из рис.6 [8];
kp=1,31 кг/м3 – определяется из рис.7 [8].
При давлении 4 кПа и расчётном расходе газа VГрас=0,405 м3/с диаметр газового сопла – dГ =85 мм.
Проверим скорости в характерных сечениях горелки. По рис.8[8] найдём скорости Wг20=65 м/с и воздуха– Wв20=20 м/c на выходе из горелки при t=20 оС.
Действительные скорости сред:
Отношение скоростей:
Отношение скоростей находится в пределах допустимого [8]. По табл.4 [8] определяем размеры горелки ДНБ-275/85 (см. прил 1.).
Скорость газовой смеси на выходе из носика горелки:
Скорости движения сред в подводящих трубопроводах:
6. Расчет газового, воздушного и дымового трактов нагревательных печей.
6.1 Определение размеров газо- и воздухопроводов.
Участок 1 диаметром d1(D1) и длиной l1(L1) соединяет каждую горелку с раздаточным коллектором.
l1 = 6 м – газопровод; L1=3 м – воздухопровод; d1 =D5, a D1= D2
Участок 2 (зонный коллектор) диаметром d2(D2) и длиной l2(L2) обеспечивает равномерное распределение газа(воздуха) на группу горелок данной зоны отопления.
Задаемся рациональными скоростями движения газа и воздуха:
wГ2=15 м/с; wВ2=8 м/с.
Площадь проходного сечения трубы для газа:
, где V2=BБ×0,225=2,971 м3/с.
Отсюда диаметр трубы:
;
Площадь проходного сечения трубы для воздуха:
, где V2=BБ×0,225=2,971 м3/с.
Отсюда диаметр трубы:
.
Длина l2 =L2=Bn+2=11,6 м.
Участок 3 диаметром d3(D3) и длиной l3(L3) соединяет зонный коллектор с печным. На нем размещают дроссельный клапан для плавного регулирования расхода газа(воздуха) на группу горелок зоны и измерительную диафрагму для контроля расхода газа (воздуха) на зону отопления.
l3=L3=12 м; d3=d2 =0,56154 м; D3=D2=0,76892 м.
Участок 4 диаметром d4(D4) и длиной l4(L4) обеспечивает подвод газа (воздуха) к печи из цехового газопровода (воздухопровода) и раздачу его по зонам коллектора.
Диаметр трубы газа:
;
Диаметр трубы под воздух:
.
Общая длина l4=L4=35 м.
6.2 Расчёт дымового тракта.
Дымовой тракт представляет собой систему каналов - боровов, обеспечивающих движение продуктов горения из печи к дымовой трубе. Расчет ведем в соответствии с типовой схемой дымового тракта методической печи. Скорость продуктов горения w02=2,5 м/с [6].
1) Соединение печи с рекуператором.
Проходное сечение борова f1=a´b=2,9×9,6=27,84 м2, а длина l1=5,5 м. Тогда:
2) горизонтальный участок – рекуператор с дымовой трубой.
Длина l2=40 м. Проходное сечение борова:
Выбираем боров с проходным сечением fБ=21 м2 (см. рис.4), [6,прил.6].
Размеры борова: В=3944 (мм) и Н=5681 (мм).
Реальная скорость дымовых газов:
Схема дымового тракта представлена в прил. 2.
Рис.4. Дымовой боров.
6.3 Аэродинамический расчёт дымового тракта.
Потери давления на трение па первом участке (при `t1=1000°C) :
где
Для кирпичных каналов l=0,05 Вт/(м×К).
Плотность дымовых газов rПС,0=1,31 кг/м3 .
Средняя температура газов на втором участке:
Потери давления на трение па 2-ом участке (при `t2=875°C) :
где
Суммарные потери на трение:
Расчет потерь давления на местных сопротивлениях.
Участок 1: при значениях b¢/ b=1,16 и h/ b¢=3,31 по приложению 8 [6] принимаем коэффициент местного сопротивления x1=0,9, а при b¢/ b=2,2 и h/ b¢=1,47 - x2=0,75.
Потери давления находят по формуле:
Участок 2: при значении j=25° - угол открытия дросельного клапана в прямоугольном канале [6, прил.8] принимаем коэффициент местного сопротивления x4=2, а при L/H=0,75 (задвижка – шибер в прямоугольном сечении) - x5=0,6 и принимаем что x3=1,4.Так как труба круглая h/ b¢=1 и b¢/ b=1,3 следовательно коэффициент местного сопротивления x6=1.
Тогда потери давления находят по формуле:
Суммарные потери на местных сопротивлениях :
Изменение геометрического напора, зависящее от вертикальных участков борова, рассчитывается по формуле:
где H – высота опускания продуктов в дымовом тракте,(5,5 м).
Расчет аэродинамического сопротивления рекуператора см. пункт 4.6.
Для дымового тракта разряжение, создаваемое дымовой трубой (с 50% запасом):
Библиографический список.
1. Соломенцев. С.Л. Расчёт горения топлива. –Липецк: ЛПИ, 1980. – 38с.
2. Лукоянов Б. И. Учебное пособие для расчета металлургических печей. – Воронеж: ВПИ, 1976. - 110с.
3. Соломенцев. С.Л. Тепловой баланс печи. –Липецк: ЛПИ, 1981. – 26с.
4. Наумкин В. А. Выбор конструкции и расчет керамических рекуператоров. –Липецк: ЛПИ, 1983. – 32с.
5. Соломенцев. С.Л. Методические указания по курсовому проектированию металлургических печей. –Липецк: ЛПИ, 1981.
6. Наумкин В. А. Расчёт газового, воздушного и дымового трактов нагревательных печей. –Воронеж: ВПИ, 1989. –56с.
7. Кривандин В. А., Марков Б. Л. Металлургические печи. –М.: Маталлургия, 1997. –463с.
8. Щапов Г. А., Карамышева Е. П. Выбор устройств для сжигания топлива в печах. Горелки типа “труба в трубе”. –Липецк: ЛПИ, 1985.
... площади пода печей определяют не через время нагрева, а используя величину напряжённости активного пода На. В этом случае Fа = Р/На, а длина печи La = Fa/B, где В – ширина печи. 4 Печи для термической обработки сортового проката. 4.1 Режимы термической обработки. Наиболее распространённым видом термической обработки сортового проката является отжиг с целью проведения полной фазовой ...
... температури, що знаходяться на рівні температури займання палива і нижче. Тому для забезпечення стабільної роботи пальників їх треба оснащати запальниками (частіше електричними). По-друге, в камерній термічної печі сильно змінюється (в 10-20 і більше разів) теплова потужність і, відповідно, витрата палива. В період нагріву потужність максимальна, а в період витримки може впасти до нуля. Стандартн ...
... мартеновской плавки. От интенсивности передачи тепла твердой шихте или жидкой ванне зависит скорость нагрева и плавления шихтовых материалов и качество работы мартеновской печи в целом. Большая часть различных мер (совершенствование конструкции головок и печи в целом, организация факела и режима завалки и т. д.) направлена на то, чтобы создать условия, при которых максимум подведенного тепла в ...
... большого конуса с воронкой, перекрывающего колошник печи, и малого конуса с вращающейся приемной воронкой. Такая конструкция засыпного аппарата позволяет равномерно распределять материал на окружности колошника и устраняет потери газов в атмосферу. Загрузку шихты в доменную печь осуществляют послойно. Процесс развития доменного производства идет в направлении повышения содержания железа в рудном ...
0 комментариев