1.2.  У начала пути.

 

Удивительное событие в науке – открытие, а еще удивительнее путь, которым приходит к нему человек. Он пробивается вперед сквозь, казалось бы непроходимые дебри, всегда вынужден сомневаться, что дороги вперед нет и ее приходится строить позади себя, как говорил немецкий физик Маке Борн.

Первый шаг был сделан ещё в конце XVIII веке. В XIX веке были сжижены уже многие газы. Опыты следовали один за другим – превращены в жидкость кислород, азот, водород. Один лишь гений не поддавался усилиям ученых. Помогали даже, что этот газ занимает в мире какое-то особое положение. Поэтому он и не превращается в жидкость. Во многих теориях мира экспериментаторы активно искали способы получения жидкого гипса. Успех выпал на долю Камерлинг-Оннеса. Именно в его лаборатории низких температур в Лейденском университете был проведен эксперимент, ставший последней страницей в истории поиска новый жидкостей.

Успех голландского физика не был случайным. Задача была решена человеком понявшим коллективный характер науки XX столетия, создавшим, может быть, первую по-настоящему современную научную лабораторию.

Мы привыкли к уже масштабным научным исследованием. Но в начале века Оннес резко выделился на фоне многих экспериментаторов, проводивших свои исследования с помощью небольших лабораторных установок. Уже первая установка для сжижения кислорода, азота и др.

Атмосферных газов, сконструированная им в 1894 году, имела такую производительность, что смогла удовлетворить быстро растущие потребности в лаборатории в течение многих лет.

1.3. Лейден, 1911г. открытие сверхпроводимости.

 

Шел 1911 год. Камерлинг-Оннес работал над проблемой, которая значилась в тогдашней лейденской исследовательской программе как «изучение свойств различных веществ при гелиевых температурах».

Одним из первых исследований, проведенным в новой температурной области, было изучение зависимости электрического сопротивления металлов от температуры. Словно предвидя развитие событий электротехники, ещё в XIX веке ввели в теорию электричества термин идеальный проводник, т. е. проводник без электрического сопротивления. С другой стороны, и физики, изучавшие свойства металлов, установили, что при сжижении температуры сопротивление металла уменьшается. Но им уже удалось добраться до температуры жидкого водорода, а сопротивление образцов из чистых металлов все падало и падало. А что же дальше? Каким будет предельное значение сопротивления проводника при приближении его температуры к абсолютному нулю. Вот этого никто не знал. В принципе можно было предположить три возможных варианта. Они изображены на рисунке 1.

Большинство ученых придерживалось мнения: при абсолютном нуле электрическое сопротивление должно исчезать (см. кривую 1 на рис.1). Действительно, электрический ток – это поток свободных электронов проходящих сквозь кристаллическую решетку. Если бы кристалл был идеальным , а его атомы строго неподвижны, то электроны двигались бы совершенно свободно, не встречал помех со стороны кристаллической решетки. Такой кристалл был бы идеальным проводником с нулевым сопротивлением. Однако, во-первых, беспорядочность колебание атомов решетки нарушают ее структуру, а во-вторых, электроны, движущиеся в кристалле, могут взаимодействовать с колеблющимися атомами, передавать им часть своей энергии, что и означает появление электрического сопротивления. При понижении атомов амплитуда колебаний атомов уменьшается, следовательно, столкновение свободных электронов с ними уменьшается, и, таким образом ток встречает меньше сопротивления! При абсолютном нуле, когда решетка уже неподвижна, сопротивление проводника становится равным нулю.

Впрочем, небольшое сопротивление тока может сохранится и при абсолютном нуле (см. кривая-2, рис.1), поскольку и тогда некоторые электроны все еще сталкивались бы с атомами решетки. Кроме того, кристаллические решетки, как правило, не являются идеальными: в них всегда есть дефекты и примеси посторонних атомов. С другой стороны была выдвинута гипотеза, согласно которой электроны проводимости при низких температурах объединяются с атомами, что приводит к бесконечно большому сопротивлению при температуре, равной ноль Кельвинов (см.кривая 3 рис1).

До 1911г. трудно было себе представить ещё какое-нибудь другой вариант. Опыт и только опыт может служить физических моделей и критерием их справедливости. Вполне понятно, что одним из первых экспериментов при температуре жидкого гелия стало измерение сопротивление металлов. Сам физический «+» холода не доступен эксперименту, поэтому Камерлинг-Оннес, который к тому времени располагал возможностью получать температуры лишь на один градус выше абсолютного нуля, измерял электрическое сопротивление металлов при разных температурах. Затем строились кривые, которые можно было продолжить, т.е. как бы составить прогноз для интересующей нас области.

Сначала Оннес исследовал образцы платины и золота, так как именно эти металлы имелись тогда в достаточно чистом виде. При понижении температуры образцов сопротивление исправно падало, стремясь к некоторому постоянному значению (остаточному сопротивлению). Однако значения электрических сопротивлений различных образцов, при равных условиях были тем меньше, чем чище оказывался металл. Отсюда вывод: «… учитывая поправку на достаточное сопротивление, я пришел к заключению, что сопротивление абсолютно чистой платиной при температуре кипения жидкого гелия, возможно, исчезнет».

Итак, ртуть: Оннес заморозил ее в сосуде, содержащим жидкий гелий, и приступил к измерению сопротивления.

Вначале все лицо так, как предусматривала теория. Электрическое сопротивление ртути плавно падало по мере снижения температуры: 10; 5; 4,2К, и сопротивление стало таким малым, что его вообще не удавалось зарегистрировать приборами, имевшимися в лаборатории. Позднее, в 1913г., вспоминая этот период; Оннест писал: « Будущее казалось мне прекрасным. Я не видел перед собой трудностей. Они были преодолены и убедительность эксперимента не вызвала сомнений». И вдруг случилось неожиданное.

В ходе дальнейших экспериментов на усовершенствованной аппаратуре Оннест заметил, что сопротивление ртути при температуре около 4,1К уменьшалось не плавно, а скачком до неизменно малой величины, т. е. исчезало начисто (рис.2.)

Первая мысль была о неисправности прибора, с помощью которого измерялось сопротивление. Включили другой. И вновь при температуре 4,1К стрелка прибора прыгнула к 0. Здесь было от чего прийти в замешательство: до абсолютного нуля было ещё четыре градуса. И он повторяет эксперимент ещё раз. Изготовляет из ртути новый образец; берет даже очень загрязненную ртуть, у которой остаточное сопротивление должно быть ярко выражено; замеряет измерительный прибор точнейшим зеркальным гальванометром.

Но сопротивление по-прежнему исчезало. Вот тогда, наверное, Камерлине-Оннес и произнес впервые слово сверхпроводимость. «… и не осталось сомнений, - писал Оннес. – в существовании нового состояния ртути, в котором сопротивление физики исчезает… ртуть перешла в новое состояние, и, учитывая его исключительные электрические свойства, его можно назвать «сверхпроводящим состоянием».

Нет нужды говорить о том, каким это была сенсация. Теперь с его именем связывали два существенных события в физике: жидкий гелий и сверхпроводимость. В 1913 году Камерлине-Оннесу была присуждена Нобелевская премия. Разумеется, Оннес думал о загадке сверхпроводимости, но тогда, в декабре 1913 года, ему оставалось только предполагать: «Эта работа должна приподнять покрывало, которым тепловое движение при обычных температурах закрывает от нас внутренний мир атомов и электронов... Из всех областей физики к нам приходят вопросы, ожидающие решения от измерений при гелиевых температурах».



Информация о работе «Сверхпроводники»
Раздел: Физика
Количество знаков с пробелами: 94355
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
11400
0
2

... или он так же пренебрежительно мал, как и в купратных ВТСП? Один из возможных способов решения данной проблемы связан с обнаружением (или необнаружением) изотопического эффекта по железу — веществу, объединяющие «железные» сверхпроводники в один класс. Впервые изотоп-эффект в железосодержащих ВТСП, а точнее, в поликристаллических соединениях SmFeAsO1–xFx (х = 0,15) с Tc = 40 К и Ba1–xKxFe2As2 (х ...

Скачать
7484
0
1

... Исследование процессов на границе сверхпроводника с ферромагнитным металлом привело к необычным результатам: немонотонная зависимость сверхпроводящей критической температуры многослойных структур ферромагнетик (F) - сверхпроводник (S), нетривиальное поведение магнитосопротивления SFS структур и подавление сверхпроводящих свойств в результате спин-поляризованной инжекции. В конце 1998 - начале ...

Скачать
5106
0
0

... ниобия в таблице элементов много проводников, но не сверх. А тепловые колебания их атомов практически такие же. Почему же у других металлов сверхпроводимость не обнаруживается? Тепловые колебания атомов не главный механизм сверхпроводимости! Проводимость конечно зависит от температуры. Но у меди, серебра почему-то при самых низких температурах сверхпроводимость не наблюдается, а у проводника ...

Скачать
6261
5
2

... Полное магнитное сопротивление будет определятся длиной немагнитных зазоров; Rm=L1+L2; Падение напряженности магнитного поля по участкам; Фm=H1/Rm1; H1=ФmxRm 1-первого участка, Фm=H2/Rm2; H2=ФmxRm 2-второго участка, Н1-падение напряженности магнитного поля первого участка, Н2-падение напряженности магнитного поля второго участка. Нс=Н1+Н2. Для работы устройство необходимо три ...

0 комментариев


Наверх