8.3 МГД – ЭНЕРГЕТИКА.
МГД – генератор предназначен для прямого преобразования тепловой энергии в электрическую. Принцип его работы состоит в следующем. Известно, что при движении в магнитном поле в проводнике возбуждается электродвижущая сила – ЭДС. Если концы проводника замкнуть на какую – либо нагрузку, то в цепи пройдет ток. Именно на этом принципе электромагнитной индукции, открытом Фарадеем более 150 лет назад, и работают все генераторы электрического тока, преобразующие механическую энергию движения в электрическую.
В обычном генераторе ротор вращается, магнитный поток пересекает обмотку и в ней возбуждается электрический ток. В МГД – генераторе нет вращающихся частей. Проводником, пересекающем магнитное поле, является низкотемпературная плазма - газ, нагретый до температуры 2500°С и содержащей добавки легкоионизирующихся веществ (для повышения электропроводности). Когда такой газ с достаточно большой скоростью проходит в специальном канале через сильное магнитное поле, возникает ЭДС. Если электроды, соответствующим образом расположены вдоль плазменного канала, соединить с нагрузкой, то ЭДС создает ток в направлении, перпендикулярном движению газа и силовым линиям магнитного поля, способный совершать работу (рис.28).
В МГД – генераторе движение газа осуществляется за счет собственного расширения, то есть без применения какого – либо двигателя. В канале МГД – генератора вообще нет движущихся частей, и поэтому материал, из которого сделаны наиболее ответственные элементы, не испытывает сколько-нибудь значительных механических усилий. В этом состоит одно из важных преимуществ преобразования энергии с помощью МГД-геретора.
Перед разработчиками этих генераторов стоит та же нелегкая проблема, что и перед создателями термоядерного реактора: как получить сильные магнитные поля? Постоянные и очень сильные магнитные поля нужны для того, чтобы за малое время пролета частиц по каналу успеть «прибить» их к тому или иному электроду.
В МГД – электростанциях будущего, так же как и в термоядерных реакторах, необходимо использовать сверхпроводящие магнитные системы. В противном случае большая часть энергии будит уходить на собственные нужды МГД-генератора.
Магнитная система для наиболее распространенного типа МГД-генератора, так называемого линейного генератора, подобно отдланяющему магниту, используемому в ускорительной техники. Но размеры магнитной системы крупной МГД-электростанции должны быть значительно больше, чем магнитных систем, создаваемых для любых иных целей. Так, у МГД-генератора мощностью порядка 500МВт сечение канала, в котором создается магнитное поле, будет составлять несколько квадратных метров при длине более 10м. Запасенная в магнитном поле энергия может превышать 1010 Дж.
9. Применение сверхпроводимости.
Вопросы различных применений сверхпроводимости стали обсуждаться практически сразу же после открытия этого поразительного явления. Еще Камерлинг – Оннес считал, что с помощью сверхпроводников можно создавать экономичные установки для получения сильных магнитных полей. Однако реальное использование сверхпроводимости началось лишь в конце 50-х – начале 60-х годов. В настоящее время уже работают сверхпроводящие магниты различных размеров и формы. Их применение вышло за рамки чисто научных исследований, и сегодня они широко используются в лабораторной практике, в ускорительной технике, томографах, установках для управляемой термоядерной реакции. С помощью сверхпроводимости стало возможным повысить чувствительность некоторых измерительных приборов. Особенно следует подчеркнуть влияние сквидов в технику, в том числе и в современную медицину. Сверхпроводимость стала большой отдельной отраслью промышленности. Открытие высокотемпературной сверхпроводимости создало предпосылки к более широкому внедрению в повседневную практику различных сверхпроводящих устройств.
Наибольшее применение сверхпроводники нашли в настоящее время в области создания сильных магнитных полей. Современная промышленность производит из сверхпроводников второго рода разнообразные провода и кабели, используемые для изготовления обмоток магнитов. Преимущества сверхпроводящих магнитов очевидны. С помощью сверхпроводников получают значительно более сильные магнитные поля, чем при использовании железных магнитов. Сверхпроводящие магниты являются и более экономичными.
Следует отметить, что максимально возможное магнитное поле, создаваемое сверхпроводящими магнитами, ограничено верхним пределом для плотности тока (критическими токами). Критический ток определяется, как правило, технологией приготовления проводников, а не верхним критическим полем материала.
Сверхпроводящие магниты обладают еще одним преимуществом по сравнению с обычными. Они могут работать в короткозамкнутом режиме, когда поле заморожено в объеме, что обеспечивает практически не зависящую от времени стабильность поля. Это свойство чрезвычайно важно при измерениях в веществе ядерного магнитного и электронного парамагнитного резонансов, в томографах и т.п.
В сверхпроводящих соленоидах с большим объемом поля запасенная энергия достаточно велика. В случае перехода катушки в нормальное состояние эта энергия превратиться в тепло. Если при переходе в нормальное состояние вся энергия бесконтрольно превратиться в тепло, то это может привести к полному разрушению магнита. Во избежании таких катастрофических последствий самопроизвольного перехода катушки в нормальное состояние соленоиды, в особенности большие, снабжаются специальными защитными устройствами, предназначенными для быстрого вывода запасенной энергии.
Очень заманчиво попытаться использовать сверхпроводники в электротехнике и энергетике. Ведь в настоящее время потери на джоулево тепло в проводящих проводах оцениваются величиной 30 - 40%, то есть более трети всей производимой энергии тратиться даром – на «отопление» Вселенной. Если же передавать электроэнергию по сверхпроводящим проводам с нулевым сопротивлением, то таких потерь не будет вообще. Это равносильно увеличению выработки электроэнергии более чем на треть. На основе сверхпроводников можно создавать электродвигатели и генераторы с высоким КПД и другими улучшенными рабочими характеристиками.
Если над металлическим кольцом с током поместить сверхпроводящую сферу, то на её поверхности в силу эффекта Мейснера индуцируется сверхпроводящий ток, что приводит к появлению сил отталкивания между кольцом и сферой, и сфера висит над кольцом. Подобный эффект механического отталкивания наблюдается и в том случае, когда над сверхпроводящим кольцом помещается постоянный магнит. Этот эффект, часто используемый для демонстраций явления сверхпроводимости, получил название «гроб Магомета», ибо, по преданию, гроб Магомета висел в пространстве без всякой поддержки.
Явление механического отталкивания применяется, в частности, для создания подшипников и опор без трения. Заманчива перспектива использования левитации сверхпроводника в транспорте. Речь идет о создании поезда на магнитной подушке, в котором будут полностью отсутствовать потери на трении о колею дороги. Модель такой сверхпроводящей дороги длиной 400м была создана в Японии еще в 70-х годах. Расчеты показывают, что поезд на магнитной подушке сможет развивать скорость до 500 км/ч. такой поезд будет «зависать» над рельсами на расстоянии 2 – 3 см, что и даст ему возможность разгоняться до указанных скоростей.
Широко используется в настоящее время сверхпроводящие, объемные резонаторы. С одной стороны, такие сверхпроводящие резонаторы позволяют получить высокую частотную избирательность. С другой стороны, сверхпроводящие резонаторы широко используются в сверхпроводящих ускорителях, позволяя существенно уменьшить мощность, требуемую для создания ускоряющего электрического поля. Как правило, сверхпроводящие резонаторы изготовляются из свинца либо из ниобия.
Одно из самых распространенных направлений прикладной сверхпроводимости – использование сквидов как в научных исследованиях, так и в различных технических областях. градиометры на основе сквидов реагируют чрезвычайно слабые магнитные поля, поэтому их уже сегодня эффективно используют в медицине и биологии для исследования полей живых организмов и человека. В геологии сквиды применяются для определения изменения силы гравитации в различных точках Земли. Такая информация нужна для поиска полезных ископаемых.
Наиболее перспективными направлениями широкого использования высокотемпературных сверхпроводников считаются криоэнергетика и криоэлектроника. В криоэнергетике уже разработана методика приготовления достаточно длинных проводов (до 1000 метров) проводов и кабелей на основе висмутовых ВТСП – материалов. Этого уже хватает для изготовления небольших двигателей со сверхпроводящей обмоткой, сверхпроводящих трансформаторов, индуктивностей и т.п. На основе этих материалов уже созданы сверхпроводящие соленоиды, обеспечивающие при температуре жидкого азота (77К) магнитные поля порядка 10 000Гс.
Темп технологических и прикладных исследований очень высок, так что, возможно, промышленность освоит выпуск изделий из высокотемпературных сверхпроводников раньше, чем будет достоверно выяснена природа сверхпроводимости в металлооксидных соединениях. Для технологии в первую очередь важен сам факт существования материалов, сверхпроводящих при температуре жидкого азота. Однако целенаправленное и осмысленное движение вперед, в том числе технологической сфере, невозможно без всестороннего исследования уже известных ВТСП, без понимания всех тонкостей высокотемпературной сверхпроводимости как интереснейшего физического явления. Тем более это относится к поиску новых сверхпроводников.
Я привела лишь несколько примеров практического использования сверхпроводимости. Не меньшее значение, конечно, имеют проблемы передачи электроэнергии на большие расстояния без потерь, создания накопителей энергии, защиты космических аппаратов от космического излучения и т.д. примеров научного и технического применения сверхпроводимости множество, но подобное изучение этих вопросов выходит за рамки данной работы.
Заключение.
В этой работе я лишь приподняла завесу над исследованием физики сверхпроводимости. Эту тему можно было бы изучить намного глубже, но к большому сожалению подобное изучение данной темы выходит за рамки данной работы. Остается еще много вопросов, на которые пока не получены ответы.
В 1974 году Л. Купер в своей Нобелевской лекции привел следующие высказывания выдающегося французского математика Анри Пуанкаре: «Ученый должен систематизировать факты. Наука состоит из них подобно тому, как здание состоит из кирпичей. Однако простое нагромождение фактов похоже на науку не более, чем груда камней на дом». От себя Купер добавил: «Из обычных камней можно построить и скромный дом, и великолепный замок. С утилитарной точки зрения и то, и другое служит для ограничения некоторой части пространства с целью предохранить её от дождя и холода. Разница состоит в претензиях и средствах строителей и в искусстве, с которым они воплощают свой замысел. Теория, оперирующая стандартными понятиями, также может быть полезна при решении многих скромных задач. Однако когда мы вступаем в сферу общих концепций и идей, перед нашим взором открывается нечто подобное архитектурным шедеврам с колоннами умопомрачительной высоты и арками дерзкой и почти невероятной ширины. Они сводят во едино данные о магнитном моменте электрона и о явлениях на стыке двух различных металлов при абсолютном нуле, они покрывают расстояние от свойств вещества при экстремально низких температурах до его поведения в недрах звезд, от четности операторов относительно движения времени до особенностей коэффициентов затухания вблизи критической температуры. Говоря об этом, я хотел бы убедить моих коллег – теоретиков, а также и самого себя в том, что в конечном счете наша «голубая мечта» должна состоять в построении не только практически полезного, но и эстетически прекрасного здания науки».
От себя я могу только добавить, что все мы живем в этом городе науки, где есть дворцы, есть и хижины. Кто приносит на строительство этих сооружений маленький кирпич, кто стесывает резкие углы глыбы, внесенных гигантами. Я хочу пожелать будущим жителям этого города любить его. В нем не только необычайной красоты проспекты и улицы, но и прекрасные закоулки, надо только учиться видеть неповторимую красоту результатов деятельности человеческого разума.
Список литературы:
1)Гинзбург В.Л. Сверхпроводимость. – М.: Наука. – 1990.
2)Кресин В.З. Сверхпроводимость и сверхтекучесть. – М.: Наука. – 1978.
3)Лутинов В.С. Физические основы сверхпроводимости: Учеб. для спец.
вузов. – М.: Высш. шк., 1989.
4)Мнеян. М.Г. Сверхпроводники в современном мире. – М.: Наука. – 1991.
5)Палицкий Э.А. Основы теории сверхпроводимости: Учеб. для спец.
вузов. – М.: Высш. шк., 1985.
6)Ципенюк Ю.М. Физические основы сверхпроводимости: Учеб. для спец.
вузов. – М.: Высш. шк., 1996.
7)Шмидт В.В. Введение в физику сверхпроводников. – М.: Знание. – 1982.
... или он так же пренебрежительно мал, как и в купратных ВТСП? Один из возможных способов решения данной проблемы связан с обнаружением (или необнаружением) изотопического эффекта по железу — веществу, объединяющие «железные» сверхпроводники в один класс. Впервые изотоп-эффект в железосодержащих ВТСП, а точнее, в поликристаллических соединениях SmFeAsO1–xFx (х = 0,15) с Tc = 40 К и Ba1–xKxFe2As2 (х ...
... Исследование процессов на границе сверхпроводника с ферромагнитным металлом привело к необычным результатам: немонотонная зависимость сверхпроводящей критической температуры многослойных структур ферромагнетик (F) - сверхпроводник (S), нетривиальное поведение магнитосопротивления SFS структур и подавление сверхпроводящих свойств в результате спин-поляризованной инжекции. В конце 1998 - начале ...
... ниобия в таблице элементов много проводников, но не сверх. А тепловые колебания их атомов практически такие же. Почему же у других металлов сверхпроводимость не обнаруживается? Тепловые колебания атомов не главный механизм сверхпроводимости! Проводимость конечно зависит от температуры. Но у меди, серебра почему-то при самых низких температурах сверхпроводимость не наблюдается, а у проводника ...
... Полное магнитное сопротивление будет определятся длиной немагнитных зазоров; Rm=L1+L2; Падение напряженности магнитного поля по участкам; Фm=H1/Rm1; H1=ФmxRm 1-первого участка, Фm=H2/Rm2; H2=ФmxRm 2-второго участка, Н1-падение напряженности магнитного поля первого участка, Н2-падение напряженности магнитного поля второго участка. Нс=Н1+Н2. Для работы устройство необходимо три ...
0 комментариев