Федеральное агентство по образованию

Государственное образовательное учреждение высшего профессионального образования
Вятский государственный гуманитарный университет

Математический факультет

Кафедра математического анализа и методики преподавания математики

Выпускная квалификационная работа

Собственные колебания пластин

Выполнила:

студентка V курса математического факультета

Чураева Анна Сергеевна

Научный руководитель: старший преподаватель кафедры математического анализа и МПМ С.А. Фалелеева

Рецензент: старший преподаватель кафедры математического анализа и МПМ Л.В. Ончукова

Допущена к защите в государственной аттестационной комиссии

«___» __________2005 г. Зав. кафедрой М.В. Крутихина

«___»___________2005 г. Декан факультета В.И. Варанкина

Киров

2005


Содержание

Введение........................................................................................................... 3

Глава I Основные положения математической физики и теории дифференциальных уравнений........................................................................................................... 4

1.1 Поперечные колебания. Начальные и граничные условия..................... 4

1.2 Метод разделения переменных или метод Фурье................................... 6

1.3 Однородные линейные уравнения второго порядка с постоянными коэффициентами..................................................................................................................... 8

Глава II Нахождение функций, описывающих собственные колебания мембран 11

2.1 Основные определения............................................................................ 11

2.2 Собственные колебания прямоугольной мембраны.............................. 12

2.3 Собственные колебания круглой мембраны.......................................... 19

Заключение.................................................................................................... 28

Библиографический список........................................................................... 29

Приложение................................................................................................... 30


Введение  Математическая физика ставит своей задачей возможно более точное изучение явлений природы. С этой целью она использует аппарат математики. Объектом изучения математической физики могут служить только те явления природы, которые поддаются измерению. Например, механическое движение, звук, теплота, свет и т. д. Цели работы: 1.  Изучить математическую литературу по данной теме.

2.  Освоить основные методы решения задач математической физики и применить их к решению задач.

Задачи работы:

1.  Решить двумерное уравнение колебаний мембраны при дополнительных условиях для прямоугольной и круглой мембраны.

2.  Сравнить полученные результаты для обоих случаев с аналогичными задачами, решенными для других дополнительных условий.

Методы работы:

·  Изучение специальной литературы;

·  Решение задач.


Глава I Основные положения математической физики и теории дифференциальных уравнений

Круг вопросов математической физики тесно связан с изучением различных физических процессов. Сюда относятся явления, изучаемые в гидродинамике, теории упругости, электродинамике и т. д. Возникающие при этом математические задачи содержат много общих элементов и составляют предмет математической физики.

 Дифференциальным уравнением с частными производными называется равенство, содержащее неизвестную функцию от нескольких переменных, независимые переменные и частные производные неизвестной функции по независимым переменным. Решением уравнения с частными производными называется функция, обращающая это уравнение в тождество [4].

1.1 Поперечные колебания. Начальные и граничные условия

При математическом описании физического процесса нужно, прежде всего, поставить задачу, т.е. сформировать условия, достаточные для однозначного определения процесса. Дифференциальные уравнения с частными производными имеют, вообще говоря, бесконечное множество решений. Поэтому в том случае, когда физическая задача приводится к уравнению с частными производными, для однозначной характеристики процесса необходимо задать некоторые дополнительные условия.

В случае обыкновенного дифференциального уравнения 2-го порядка частное решение определяется начальными условиями, например, заданием значений функции и ее первой производной при «начальном» значении аргумента. Для уравнения с частными производными возможны различные формы дополнительных условий.

Рассмотрим их для задачи о поперечных колебаниях струны (под струной понимаем тонкую упругую нить). Каждую точку струны длины l можно охарактеризовать значением ее абсциссы x. Для определения положения струны в момент времени t достаточно задать компоненты вектора смещения точки x в момент t. Тогда  будет задавать отклонение струны от оси абсцисс.

(1.1.1)

 
Если концы струны  закреплены, то должны выполняться граничные условия

, .

Так как процесс колебания струны зависит от ее начальной формы и распределения скоростей, то следует задать начальные условия:

(1.1.2)

 
,

.

Таким образом, дополнительные условия состоят из граничных и начальных условий, где  и  – заданные функции точки.

(1.1.1¢)

 
Если концы струны движутся по заданному закону, то граничные условия (1.1.1) принимают другой вид:

, ,

где  и  - заданные функции времени t.

Возможны и другие типы граничных условий. Рассмотрим, например, задачу о продольных колебаниях пружины, один конец которой закреплен (точка подвеса), а другой конец свободен. Закон движения свободного конца не задан и зачастую является искомой функцией.

В точке подвеса x=0 отклонение

;

на свободном конце x=l натяжение пружины

равно нулю (нет внешних сил), так что математическая формулировка условия свободного конца имеет вид

.

Если конец x=0 движется по определенному закону , а при x=l задана сила , то

.

Типичным является также условие упругого закрепления, скажем для x=l

 или ,

при котором конец x=l может перемещаться, но упругая сила закрепления вызывает на этом конце натяжение, стремящееся вернуть сместившийся конец в прежнее положение.

Если точка (система), относительно которой имеет место упругое закрепление, перемещается, и ее отклонение от начального положения задается функцией , то граничное условие принимает вид

.

Условие упругого закрепления при x=0 имеет вид

.

Таким образом, имеют место три основных типа граничных условий, например, при x=0:

- граничные условия 1-го рода  - заданный режим,

- граничное условие 2-го рода  - заданная сила,

- граничное условие 3-го рода  - упругое закрепление.

Аналогично задаются граничные условия и на втором конце x=l. Если функция, задаваемая в правой части ( или ), равны нулю, то граничные условия называются однородными [8].


Информация о работе «Собственные колебания пластин»
Раздел: Физика
Количество знаков с пробелами: 26406
Количество таблиц: 1
Количество изображений: 21

Похожие работы

Скачать
22025
0
3

... сигнала от этого нарушения. Таким образом, выделяя участок спектра сейсмосигнала около собственной частоты этого слоя, можно выявить зону его нарушения. Описанную здесь модель распространения поля упругих колебаний при сейсморазведочных работах подтвердили, сами того не желая, ученые Института геофизики СО РАН. Их эксперимент заключается в следующем. Мощный, 100-тонный генератор гармонического ...

Скачать
60177
0
12

... - внутренняя и наружная шестерни, 4 - сепараторы , 5 - пластины По характеру воздействия абразива на полупроводниковые пластины различают шлифование свободным и связанным абразивом. В зависимости от зернистости используемого абразива, режимов обработки и качества полученной поверхности различают предварительное (черновое) и окончательное (чистовое) шлифование. Шлифование свободным абразивом ...

Скачать
19573
25
8

... 84,4 29 1,7 3,9 15,4 54,5 119,4 210,3 327,1 469,8 833,2 30 35,8 36 37,3 41,4 47,6 55,1 63,4 72,3 91,1 31 2,1 4,4 13,8 41,4 86,4 149,1 229,6 328,1 578,5 2.   Расчет прочности печатных плат В соответствии с общей методикой прочностных расчетов для оценки прочности печатной платы необходимо в первую очередь рассчитать основную частоту собственных колебаний платы. ...

Скачать
42976
3
0

... с использованием вновь изученного материала. 1.2   Развитие познавательного интереса к физике при использовании компьютерных технологий Глава 2 Компьютерное моделирование электромагнитных колебаний 2.1 Возможности применения графических пакетов при изучении электромагнитных колебаний в курсе физики средней школы На сегодняшний день разработано множество графических пакетов и оболочек (Соrel, ...

0 комментариев


Наверх