О средствах учета электрической энергии, используемых в электротехнологиях

Средства учета количества электричества и электрической энергии
Состояние вопроса дозирования количества электричества и электрической энергии в современном производстве Потребность производства в устройствах дозирования электрической энергии О средствах учета электрической энергии, используемых в электротехнологиях ВОПРОС КВАНТОВАНИЯ ТЕКУЩЕГО ЗНАЧЕНИЯ КОЛИЧЕСТВА ЭЛЕКТРИЧЕСТВА И ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ Цифровое дозирование количества электричества и электрической энергии ПРОЕКТИРОВАНИЕ УСТРОЙСТВ ДОЗИРОВАНИЯ Разработка схемы устройства цифрового дозирования электрической энергии АНАЛИЗ МЕТРОЛОГИЧЕСКИХ ХАРАКТЕРИСТИК Определение погрешности устройства дозирования количества электричества Зависимость погрешности дозирования от состава технических средств комплексов дозирования Расчет стоимости материалов, необходимых для изготовления устройства дозирования электрической энергии Расчет основной заработной платы служащих на этапе проектирования Расчет основной заработной платы рабочих на этапе изготовления опытного образца Расчет дополнительной зарплаты и отчислений на социальное страхование рабочих и служащих ОХРАНА ТРУДА Освещение Вибрация Электробезопасность Электромагнитное излучение Противопожарная безопасность
145927
знаков
16
таблиц
16
изображений

1.4 О средствах учета электрической энергии, используемых в электротехнологиях

На протяжении последних десятилетий измерение расхода активной электрической энергии в цепях переменного тока для промышленных целей и бытовых нужд производится с помощью индукционных счетчиков переменного тока номинальной частотой 40-60 Гц (ГОСТ 6570-75) [18].

Принцип действия индукционного измерительного механизма таких счетчиков основан на взаимодействии двух или нескольких переменных магнитных потоков с токами, индуктированными ими в подвижном алюминиевом диске. Возникающий при этом в подвижном элементе счетчика вращающий момент пропорционален активной мощности. Для учета израсходованной энергии с помощью счетного механизма осуществляется подсчет количества оборотов диска.

В настоящее время среди наиболее распространенных приборов для учета активной энергии можно выделить однофазные счетчики киловатт-часов типов СО-И445, СО-И446, СО-И449 2-го класса точности, трехфазные счетчики киловатт-часов типов СА3-И674, СА3-И675, СА3-И681, СА3-И682 1-го класса точности и СА3-И670, СА3-И672, СА3-И677, СА3-И678 2-го класса точности [7].

С ростом мощностей и расширением ассортимента электрических нагрузок в сетях электроснабжения современных потребителей электроэнергии возрастает уровень нелинейных искажений токов и напряжений, который в отдельных случаях может достигать значений до 20%. В этих условиях индукционные счетчики, работающие в узком диапазоне частот, дают дополнительную погрешность до 10% [19]. Поэтому неотложной задачей времени стало внедрение в производство цифровых электронных счетчиков, способных прийти на смену электромеханическим.

В связи с интенсивным развитием цифровой электронной техники появилась возможность проектирования более точных, чувствительных и быстродействующих цифровых средств измерений электрической мощности и энергии. Такие приборы были разработаны на базе, так называемых, предвключенных модулей, которые представляют собой аналоговые измерительные преобразователи мощности (ИПМ). Например, электронные приборы для измерения мощности строятся на основе измерительного преобразователя мощности в напряжение, на выходе которого устанавливается магнитоэлектрический измерительный механизм со шкалой, градуированной в единицах мощности.

Наиболее распространенный принцип построения электронных счетчиков электроэнергии, выпускаемых на данный момент промышленностью, состоит в дополнении к ИПМ преобразователя напряжения в частоту и подсчете импульсов на выходе этого преобразователя.

В качестве предвключенных приборов в модульном исполнении выпускаются измерительные преобразователи активной, реактивной и полной мощностей переменного тока, предназначенные для работы, как в однофазных, так и в трехфазных цепях для измерения мощности и энергии.

В основе работы преобразователя активной мощности лежит реализация зависимости

,

где Р – измеряемая мощность; Т – период тока i и напряжения u на нагрузке. Наиболее ответственным элементом исследуемого преобразователя является устройство перемножения текущих значений напряжения u(t) и тока i(t).

Академик П.П. Орнатский разделяет структуры существующих цифровых измерителей мощности по следующим принципам построения [19]:

структуры с промежуточными аналоговыми преобразованиями мощности в информативный параметр электрического сигнала и с последующим преобразованием аналог – код (рисунок 1.2, а);

структуры с преобразованием информативных параметров входных сигналов в код и определением результата при помощи цифровых вычислительных устройств (микропроцессоров) (рисунок 1.2, б).


а) б)

Рисунок 1.2 - Структуры цифровых измерителей мощности:

а) – с аналоговым преобразователем мощности; б) – с кодированием мгновенных значений тока и напряжения и последующим цифровым вычислением значения мощности

В настоящее время в энергетике используются преимущественно структуры с аналоговыми ИПМ, например, в системах электропередачи, на АСУ ТП энергообъектов, на электротранспорте.

Структуры с преобразованием информативных параметров входных сигналов в код предполагают цифровое перемножение их мгновенных значений с последующим осреднением результатов.

При этом значение измеряемой мощности NW будет определяться из выражения

, (1.5)

где n – число мгновенных значений Nu(kTд) и Ni(kTд) обоих сигналов в дискретные моменты времени за период Т с шагом дискретизации Тд.

Данная структура содержит два преобразователя мгновенных значений u(t) и i(t) в код, микропроцессор и цифровое счетное устройство.

Применение этого метода является наиболее эффективным в цепях с сигналами низких и инфранизких частот, что обусловлено ограниченным быстродействием.

Более высокое быстродействие, чем в предыдущем примере обеспечивает реализация структур с цифровым перемножением интегральных значений входных сигналов, однако при этом требуется дополнительно преобразовывать в цифровой код косинус угла фазового сдвига между током и напряжением исследуемой цепи. Недостатком такого метода является возникновение дополнительных погрешностей из-за отклонения форм кривых входных сигналов от синусоидальных.

Применение так называемого вычислительного преобразователя с использованием микропроцессорных структур, не приобрело широкого распространения и встречается, в основном, в области низких частот. Вызвано это тем, что в части быстродействия и точности такие преобразователи не вполне отвечают необходимым требованиям, а их приборная реализация сопряжена с большим расходом оборудования [20].

Электронные счетчики активной энергии строятся на основе аналогового преобразователя мощности с последующим интегрированием его выходной величины в соответствии с зависимостью

. (1.6)

Схема такого счетчика показана на рисунке 1.3, где ПМН – преобразователь мощности в напряжение, представленный на рис.4, а; ПНЧ – преобразователь напряжения в частоту; СИ – счетчик импульсов. Как было показано, UВЫХ пропорционально активной мощности Р. С помощью ПНЧ напряжение UВЫХ преобразуется в частоту f импульсов, которая таким образом пропорциональна мощности Р. Выходные импульсы ПНЧ подсчитываются счетчиком импульсов СИ, показания которого пропорциональны активной энергии Wа.


Рисунок 1.3 - Структурная схема электронного счетчика активной энергии

Наибольшее распространение в системах учета тепловой и электрической энергии получили импульсные перемножающие устройства (ИПУ) с широтно-импульсной (ШИМ) и амплитудной модуляцией (АМ), которые обеспечивают высокую статическую точность, достигающую значения 0,01% [21, 22], как в цепях постоянного тока, так и в цепях переменного (однофазного, трехфазного) тока с синусоидальной или несинусоидальной формой сигнала. Например, на этом принципе работают измерительные преобразователи мощности Е748, Ф5139, счетчик для учета энергии на электротранспорте Ф440, активно-реактивные счетчики электрической энергии – однофазный Ф441 и трехфазный счетчик Ф652.

В промышленности и для хозяйственных нужд используется большое разнообразие электрических счетчиков, применяемых для учета расхода электрической энергии в цепях переменного или постоянного тока, которые имеют в качестве измерительных устройств индукционную или электронную системы, однако ни один из известных типов счетчиков не предназначен для дозирования энергии, т.е. не снабжен устройствами для задания дозы и подачи управляющих сигналов на своевременное включение-отключение источников энергии от нагрузки.

Цифровые измерительные приборы с подобными - предвключенными - измерительными преобразователями были разработаны для решения наиболее насущных задач в различных областях науки, техники, энергетики, народного хозяйства для измерения электрической энергии, электрической мощности, параметров магнитных цепей, массы изделий, температуры и т.п. Внедрение таких приборов в производство позволило решить проблему автоматизации измерительных процедур, требующих непрерывного контроля технологических параметров в течение длительных периодов времени.

Наиболее высокую эффективность принесло применение таких приборов в энергетике, где для обеспечения экономного расходования энергоресурсов и глубокого изучения энергетических аспектов различных процессов необходимы точные быстродействующие и чувствительные цифровые средства измерения электрической мощности и энергии. Широкое применение нашли измерительные преобразователи мощности (ИПМ) в ваттметрах и счетчиках электроэнергии в энергетике и на электротранспорте.

Электронный счетчик электрической энергии должен реализовывать процедуру вычисления интеграла от произведения мгновенных значений напряжения и тока нагрузки, поэтому в его состав должны входить первичные преобразователи напряжения, тока, множительное и интегрирующее устройства.

Известны различные варианты построения схем электронных счетчиков, предназначенных для систем учета и контроля электрической энергии в однофазных и трехфазных цепях переменного тока, где используются аналоговые множительные устройства с широтно-импульсной и амплитудной модуляцией с последующим преобразованием полученного напряжения в частоту. К таковым можно отнести, например, счетчики типа Ф441, Ф652 и т.п.

Однако ни в одном из перечисленных технических решений не предусмотрена возможность дозирования энергии, расходуемой на проведение определенной технологической операции, хотя потребность в этом существует, например, в машиностроении для предварительного прогрева металла перед штамповкой, при точечной сварке деталей, при плавке металлов в дуговых электрических печах и т.д.

Применение электронных счетчиков переменного тока целесообразно для измерения крупных потоков энергии и в системах с высоким уровнем нелинейных искажений [19].

Повышение точности измерений мощности и энергии требует учета особенностей энергетических процессов в системах электроснабжения при наличии нагрузок, ухудшающих форму кривой напряжения и создающих колебания напряжения и асимметрию. Точность измерения мощности и энергии, потребляемых нагрузкой, определяется не только классом точности прибора, но и структурой измерительного устройства, от которой зависит, насколько применяемое устройство учитывает искажающие свойства нагрузок.

В предлагаемом устройстве измерение расхода электрической энергии осуществляется путем аналогового перемножения мгновенных значений сигналов, пропорциональных напряжению и току нагрузки с последующим интегрированием результата в течение определенного времени. Величина текущего расхода электрической энергии пропорциональна сумме счетных импульсов, полученных в процессе квантования по вольт-секундной площади результата текущего интегрирования.

Способность дозирования, приданная электронному измерителю с целью расширения функциональных возможностей, заключается в формировании им управляющего сигнала на отключение цепи нагрузки от источника питания в момент, когда текущий расход электрической энергии окажется равным заранее заданной величине (дозе) энергии. Таким образом, данный электронный измеритель-дозатор, наряду с измерением расхода энергии, ограничивает подачу в нагрузку величины энергии, превышающей заданную дозу.

Предлагаемый электронный измеритель электрической энергии можно использовать как в цепях переменного (однофазного, трехфазного) тока с синусоидальной или несинусоидальной формой сигнала, так и в цепях постоянного тока, применяя при этом в качестве измерительных датчиков тока прецизионные четырехзажимные резисторы, включенные последовательно с нагрузкой или трансформаторы постоянного тока.

Широтно-импульсные умножители на основе использования преобразователя напряжение-время обладают наивысшей точностью, так как транзисторы в них используются в ключевых режимах и изменение крутизны их характеристик из-за внешних воздействий не вызывает погрешности. Умножители с широтно-импульсной модуляцией в модульном исполнении имеют минимальную погрешность (0,1¸0,01%), нелинейность 0,02 %, частотный предел составляет примерно 3% от частоты несущей (до 100 кГц). На использовании умножителей с широтно-импульсной модуляцией основаны современные наиболее точные измерители электрической мощности, а также серийные электронные счетчики электрической энергии.

Электронный счетчик электрической энергии должен выполнять непрерывно и продолжительно в режиме реального времени процедуру вычисления интеграла от произведения мгновенных значений напряжения и тока нагрузки. Если при данной операции использовать устройство дозирования электрической энергии, то за время протекания тока между электрическими контактами в массе металла выделится определенная порция тепловой энергии, равная заданной дозе, не зависящая от изменений вышеуказанных параметров, за исключением незначительных тепловых потерь, затраченных на нагрев подводящих электродов.

Количество тепловой энергии, необходимое для нагрева заготовки до определенной температуры, рассчитывается предварительно и уточняется экспериментально. В конечном результате, дозированный разогрев каждой из заготовок будет производиться до одинаковой температуры, что позволит существенно повысить качество проведения технологической операции и, тем самым, снизит уровень брака.

Устройства дозирования могут применяться при исследовании защитных характеристик вставок предохранителей, тепловых реле, проверке характеристик термопреобразователей, при исследовании динамики тепловых процессов и т. д.

Целью данной работы является разработка устройства, способного осуществлять дозирование электрической энергии при электроконтактном или электродуговом нагреве металлов, в контактной точечной сварке, в микроэлектросварке, а также при электротермическом нагреве различных материалов.

Осуществлять дозирование электрической энергии можно путем включения и своевременного отключения источника энергии от нагрузки. В процессе этого действия необходимо проводить непрерывный контроль заданной и потребляемой доз энергии при помощи высокоточных электронных измерительных устройств, способных выполнять операцию вычисления потребляемой электрической и операцию сравнения.

Однако, как и в случае с электроконтактным нагревом, аппаратура управления отслеживает и регулирует изменения только входных параметров процесса, не проводя в полной мере контроля выходного параметра, каковым является величина потребленной электрической энергии. Поэтому включение в состав аппаратуры управления средств дозирования электрической энергии, которые в процессе сварки при текущих изменениях основных электрических параметров процесса, будут контролировать количество потребляемой электрической энергии, приведет к стабилизации теплового импульса, выделяемого в зоне точечной сварки, что главным образом отразится на качестве сварных соединений.

При разработке дозирующего устройства были учтены как достоинства, так и недостатки большинства разновидностей схем умножителей. Выбор был сделан на схеме ИПУ, предназначенной для измерения активной мощности.

По мере совершенствования техники аналого-цифрового преобразования мгновенных значений сигналов рассматривалась возможность цифровой обработки большого количества дискретных и квантованных значений аналоговых сигналов, с тем, чтобы путем цифрового усреднения в течение заданного интервала времени вычислить искомый интегральный параметр.



Информация о работе «Средства учета количества электричества и электрической энергии»
Раздел: Физика
Количество знаков с пробелами: 145927
Количество таблиц: 16
Количество изображений: 16

Похожие работы

Скачать
69501
3
0

... потерь, например при передаче электроэнергии; -  реконструкция устаревшего оборудования; -  повышение уровня использования вторичных ресурсов; -  улучшение структуры производства. Приёмники электрической энергии промышленных предприятий получают питание от системы электроснабжения, которая является составной частью энергетической системы. На ГПП (главной понизительной подстанции) напряжение ...

Скачать
21875
0
0

... на несколько десятков градусов выше водопроводной воды. И эта разность температур могла бы быть использована для получения механической и электрической энергии. Аккумулирование энергии При оценке машин для использования новых источников энергии – солнца, ветра, северного холода и т.п. – приходится исходить не из коэффициента полезного действия, а из стоимости установки и занимаемой полезной ...

Скачать
48288
0
0

... проводов, частей устройств; методы расчета электросетей, их защита от коротких замыканий; другие вопросы, которые решались и решаются учеными, инженерами, практиками, изобретателями. История открытий в электроэнергетике Открытие и применение электричества было одним из величайших достижений человечества. Этому предшествовали усилия многих и многих людей разных профессий в разные эпохи. ...

Скачать
75372
24
5

... кА ίУ(3), кА I″(3), кА ίУ(3), кА Точка К1 1,52 3,45 2,9 6,6 Точка К2 4,12 10,46 7,2 18,3 2.4 Выбор электрических аппаратов и токоведущих частей для заданных цепей 2.4.1 Выбор выключателей для цепей 35 и 10 кВ На подстанции номер 48П «Петрозаводская птицефабрика» установлены масляные выключатели, которые физически и морально устарели, из-за ...

0 комментариев


Наверх