4.2 Определение погрешности устройства дозирования количества электричества
Измерения количества электричества необходимо производить в широких пределах: от измерения количества электричества в кратковременных импульсах тока (единицы милликулон) до измерения количества электричества, протекающего в течение длительного времени (до 1011 Кл). Допускаемая погрешность измерения количества электричества должна находится в пределах ±(0,1-5)%.
Рисунок 4.1 – Устройство дозирования количества электричества.
Поскольку погрешность, вносимая квантователем по вольт-секундной площади была посчитана ранее (см. раздел 4.1), то для определения погрешности дозирования количества электричества в целом нам необходимо рассчитать лишь погрешности, вносимые дифференциальным усилителем, так как прочие элементы схемы дозатора (счетчик импульсов, блок индикации, блок задания дозы и т.д.) не вносят погрешности. Погрешность блока сравнения определяется временем задержки срабатывания этого устройства. Это время весьма незначительно (примерно 10 нс). За столь короткий промежуток времени в электрохимическую установку поступит очень незначительное количество электричества. В связи с этим погрешностью, вносимой этим устройством, можно пренебречь.
Найдем сначала мультипликативные погрешности дифференциального усилителя. Определим погрешность некомпенсации
dнк=100/(1+К0b)=100/(1+70000*0,0909)=0,016% (4.37),
где b=1/(1+R2/R1)=1/(1+10)=0,0909 – коэффициент обратной связи усилителя.
Погрешность от синфазного сигнала
dсс=10-mcc/20100=10-70/20100=0,0316% (4.38)
Погрешность, возникающая вследствие неточности используемых резисторов. В качестве резистора R1=1 кОм выбираем С2-29В с допуском по сопротивлению 0,05% и ТКС=5*10-6 1/ºC. В качестве резистора R2=10 кОм также выбираем С2-29В с допуском по сопротивлению 0,05% и ТКС=5*10-6 1/ºC. Тогда
δR=δR1+δR2+(ТКСR1+ТКСR2)ΔT*100%=0,05+0,05+(5*10-6+5*10-6)5*100%=0,105% (4.39)
Суммарная мультипликативная погрешность дифференциального усилителя равна
δмулт=δнк+δсс+ δR=0,016+0,0316+0,105=0,1526% (4.40)
Остальные неидеальности дифференциального усилителя устраняются применением цепей коррекции.
Таким образом результирующая погрешность дифференциального усилителя равна мультипликативной погрешности δдиф.ус=0,1526%.
Для того чтобы определить итоговую погрешность устройства дозирования количества электричества просуммируем погрешности дифференциального усилителя и квантователя по вольт-секундной площади
δдоз.КЭ=δквант+δдиф.ус=0,35387+0,1526=0,50647% (4.41)
4.3 Определение погрешности устройства дозирования электрической энергии
Рисунок 4.2 – Устройство дозирования электрической энергии.
В данном устройстве помимо квантователя погрешность вносит импульсное перемножающее устройство. Однако применяемые умножители обеспечивают превосходную статическую точность, достигающую 0,02%. Однако их полоса рабочих частот составляет всего несколько сотен Гц. В рассматриваемом умножителе один из входных сигналов изменяет длительность импульсов в последовательности, а второй – их амплитуду. После этого импульсная последовательность поступает на ФНЧ, частота среза которого намного ниже тактовой. Этот способ является радикальным с точки зрения решения всех проблем, связанных с перемножением аналоговых сигналов. Дешевизна и высокое качество многих современных микросхем ЦАП и АЦП делают его вполне доступным.
Таким образом, поскольку прочие элементы устройства дозирования электрической энергии не вносят погрешностей, то итоговая погрешность рассматриваемого устройства будет определяться суммой погрешностей квантователя по вольт-секундной площади и импульсного перемножающего устройства. Вычислим ее
δдоз.ЭЭ=δквант+δмнож=0,35387+0,02=0,37583% (4.42)
Диапазон измерения электрической энергии определяется диапазоном изменения номинальных (максимальных) токов и напряжений. Для энергии, потребляемой различными электротехническими устройствами, нижний предел диапазона измерения тока равен примерно 10-9 А, а напряжения 10-6 В. Верхний предел диапазона измерения тока равен 104 А, а напряжения – 106 В. Допускаемая погрешность измерения энергии должна находится в пределах ±(0,1-2,5)%.
... потерь, например при передаче электроэнергии; - реконструкция устаревшего оборудования; - повышение уровня использования вторичных ресурсов; - улучшение структуры производства. Приёмники электрической энергии промышленных предприятий получают питание от системы электроснабжения, которая является составной частью энергетической системы. На ГПП (главной понизительной подстанции) напряжение ...
... на несколько десятков градусов выше водопроводной воды. И эта разность температур могла бы быть использована для получения механической и электрической энергии. Аккумулирование энергии При оценке машин для использования новых источников энергии – солнца, ветра, северного холода и т.п. – приходится исходить не из коэффициента полезного действия, а из стоимости установки и занимаемой полезной ...
... проводов, частей устройств; методы расчета электросетей, их защита от коротких замыканий; другие вопросы, которые решались и решаются учеными, инженерами, практиками, изобретателями. История открытий в электроэнергетике Открытие и применение электричества было одним из величайших достижений человечества. Этому предшествовали усилия многих и многих людей разных профессий в разные эпохи. ...
... кА ίУ(3), кА I″(3), кА ίУ(3), кА Точка К1 1,52 3,45 2,9 6,6 Точка К2 4,12 10,46 7,2 18,3 2.4 Выбор электрических аппаратов и токоведущих частей для заданных цепей 2.4.1 Выбор выключателей для цепей 35 и 10 кВ На подстанции номер 48П «Петрозаводская птицефабрика» установлены масляные выключатели, которые физически и морально устарели, из-за ...
0 комментариев